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Remote Wigner polaron in a magnetic field

H. Kato* and F. M. Peeters†

University of Antwerp (UIA), Department of Physics, Universiteitsplein 1, B-2610 Antwerpen, Belgium
~Received 30 October 1998!

A remote electron moving a distance away and parallel to a two-dimensional electron system~2DES! in a
perpendicular magnetic field is mapped into a polaron problem. In high magnetic fields the 2DES crystallizes
into a Wigner lattice having two hybrid phonon modes which are neither longitudinal nor transverse. The
remote electron interacts with these hybrid phonons and forms a composite quasiparticle of electron plus
Wigner crystal distortion which is called aWigner polaron. The ground-state energy of the Wigner polaron is
calculated using second-order perturbation theory and the results are related to an experiment on resonant
tunneling.@S0163-1829~99!00721-3#
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I. INTRODUCTION

A two-dimensional electron system~2DES! can crystal-
lize into a hexagonal crystal which is called a Wigner crys
~WC!. At zero temperature this solid phase appears1 when
the electron density is less thannc54/paB

2G2, where aB

(5\2e/me2) is the effective Bohr radius andG(.137) is
the plasma parameter. For a 2DES realized in a GaAs
erojunction this valuenc is about 6.93107 cm22. For a
2DES in the classical regime, i.e.,EF,kBT, this solid phase
has been observed for electrons floating on liquid helium2,3

On the other hand, if a magnetic field is applied perpendi
lar to the system, the critical density increases due to
quenching of the kinetic energy of the electron. Andreiet al.4

found experimentally that the 2DES crystallizes when
filling factor is less than a critical valuenc50.23 at very low
temperature. This condition can be transformed into a crit
electron densitync5ncB/f0 whereB is the magnetic field
andf0 is the flux quantum. For a typical magnetic field
B520 T this critical density is 1.131011 cm22. Conse-
quently, the WC can exist in a large range of electron d
sities even in GaAs heterojunctions where the electron h
small effective mass and where usually the electron gas
the absence of a magnetic field, behaves as a quantum

A bilayer electron system~BLES! is realized in a high
quality double-quantum well5 or in a wide single-quantum
well.6 The distance between the two 2DES introduces a n
degree of freedom through which the electron-electron in
action can be modified. For example, the quantum Hall ef
is modified by the interlayer interaction5,6 and different WC
phases are predicted.7 In the present paper we investigate t
interaction of a single remote electron with a WC in t
presence of an external magnetic field. In a previous pa
we formulated theWigner polaronin a BLES in the absence
of a magnetic field.8 The electron distorts the WC locally an
the composite quasiparticle: electron1 distortion is called
the Wigner polaron. The resulting electron-phonon inter
tion in a BLES has the remarkable feature that its stren
can be modified by changing the distance between the
mote electron and the 2DES, giving rise to a continuo
localization of the polaron for small bilayer separations.8 An-
other difference with the traditional polaron problems is th
the lattice distortion~or polarization! and the electron are
PRB 590163-1829/99/59~22!/14342~7!/$15.00
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spatially separated. An alternative experimental system
double barrier tunneling structure9 in which an electron tun-
nels in or out of a 2DES. When the 2DES is not in the crys
phase the electron will interact with the plasmon modes
the 2DES which results into the plasmon polaron which
discussed in Ref. 10.

A Wigner crystal has longitudinal and transverse phon
modes.11,12 When a perpendicular magnetic field is applie
these two modes are coupled and new hybrid mo
appear.12,13The Wigner polaron will be produced now by th
polarization of these modes. In the present paper we
diagonalize the resulting phonon Hamiltonian and obtain
canonical coordinates using the Laplace transformation te
nique. After the evaluation of the polaron energy, includi
both static and dynamical mass-renormalization effects,
identify the obtained energy shifts with those observed
recent tunneling experiments.

The present paper is organized as follows. In Sec. II
discuss the mass modulation of a remote electron in the s
periodic potential of a WC. In Sec. III the hybrid phono
modes induced by a magnetic-field are obtained and a
lyzed. In Sec. IV the distortion of the WC due to a remo
electron is discussed in terms of a Wigner polaron. Pola
induced energy shifts are compared with the shift in the
sition of the tunnel current in a resonant tunneling devi
and their magnetic-field dependence is analyzed. Finally,
conclusions are given in Sec. V.

II. ELECTRON BAND STRUCTURE INDUCED BY THE
PERIODIC POTENTIAL OF A WIGNER CRYSTAL

In this section we consider thestaticWC and compute the
influence of such a periodic potential on the energy spect
of a remote electron. The potential energy of a remote e
tron a distancez separated from a WC lying in thexy plane
is given by

w~r ,z!5(
n

e2

eA~r2Rn!21z2
5 (

K (Þ0)
w~K !exp~2 iK•r !,

~1!

wherer is the 2D electron position, the lattice electrons a
situated at the hexagonal sitesRn with n the 2D lattice index,
and the 2D Fourier transform of the periodic WC potentia
14 342 ©1999 The American Physical Society
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PRB 59 14 343REMOTE WIGNER POLARON IN A MAGNETIC FIELD
w~K !5
2pns

eV

exp~2zK!

K
, ~2!

wherens is the electron density,e the static dielectric con-
stant of the medium the electrons are moving in, andV the
2D surface area. In this periodic potential the remote elec
will be in a Bloch state and the wave function is given by

c~r !5(
k

(
K

F~K !exp@ i ~K1k!•r #, ~3!

with K the 2D reciprocal-lattice vector. Then the Schr¨-
dinger equation for the remote electron in wave-vector sp
is given by

F \2

2m
~k1K !22EkGF~K !1(

K8
w~K2K 8!F~K 8!50,

~4!

whereEk is the eigenvalue for the wave numberk within the
first Brillouin zone.14 We have included the first six dom
nant reciprocal-lattice vectorsK and diagonalized the abov
equation. The resulting sub-band structure, in energy unit
E05\2K1

2/m, is shown in Fig. 1 as function of the wav
vector which is in units ofK154p/(A3a), wherea is the
lattice constant of the WC. The definition of the hig
symmetry points J, X, andG in the Brillouin zone are given
in Ref. 12. We use the material constants for GaAse
512.53 andm50.067m0 with m0 the electron mass in
vacuum and considered an electron densityns51011 cm22.
This results ina534.0 nm and gives the unitsK152.13
3106 cm22 and E0551.6 meV. Notice that near theG
point, the electron energy spectrum is parabolic. The p
odic WC potential induces gaps in the spectrum which
crease with decreasingz.

Expanding the electron energy around theG point, and
considering the parabolic dispersion asE5\2k2/2m* , al-
lows us to define the effective mass of the remote electr

FIG. 1. The electron band structure caused by the periodic
tential of the static WC. The remote electron is located az
51 nm, the electron density of the 2DES isns51011 cm22, the
unit of energy isE05\2K1

2/m551.6 meV, and the unit of wave
length is K154p/A3a52.143106 cm21, with a the WC lattice
constant.
n

e

of

i-
-

m*

m
51124S 2pns

aBK1
3D 2

exp~22zK1!, ~5!

where the dominant first six reciprocal-lattice vectors a
taken into account in Eq.~4! and K154p/(A3a) and aB
5\«/me2. Notice that increasing the remote electron se
ration z from the 2DES suppresses exponentially the sta
mass enhancement, as one would expect intuitively.

III. WIGNER CRYSTAL PHONONS
IN A MAGNETIC FIELD

A. Hamiltonian of a Wigner phonon in a magnetic field

We denote the electron positionr n in the WC by r n
5Rn1un , whereRn are the hexagonal lattice vectors, an
un is the displacement of the lattice electron. The Ham
tonian Hph describing the lattice vibrations is now repr
sented in terms of the canonical conjugate momenta:un and
pn . If we assume that the total angular momentum of
electrons vanishes, and introduce the Fourier transform
un andpn given by

un5
1

AN
(

k
u~k!exp~ ik•Rn!, ~6a!

pn5
1

AN
(

k
p~k!exp~ ik•Rn!, ~6b!

where N is the total number of electrons, we obtain th
Hamiltonian ink space13

Hph5(
k

H 1

2m
p~k!•p~2k!1

1

2
u~k!•C~k!•u~2k!J .

~7!

The first term is the kinetic energy of the electrons unde
uniform magnetic fieldB applied perpendicular to the WC
plane~i.e., xy plane! and the momentump(k) in the sym-
metric gauge is defined by

p~k!5p~k!2
mvc

2
sJ•u~2k!, ~8!

with vc5eB/mc the cyclotron frequency,m the electron
mass in the host material,2e the electron charge,c the
velocity of light, andsJ the 2D tensor

sJ5S 0 1

21 0D . ~9!

The second term in Eq.~7! is the distortion energy of the WC
lattice calculated in the harmonic approximation, i.e., up

second order in the displacementu, so thatCJ (k) is the elas-
tic tensor defined by

CJ ~k!5(
n

FI~Rn!$12exp~ ik•Rn!%. ~10!

Here,

o-
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FI~R!ab5
1

2S ]2

]Xa]Xb
1

]2

]Xb]Xa
D e2

euRu
, ~11!

is the force tensor, whereuRu5AXx
21Xy

2 and the subscripts
a andb indicate thex or y component. The quantization i
performed by introducing the commutation relations betwe
p(k) andu(k):

@p~k!a ,u~k8!b#52 i\dabdkk8 . ~12!

B. Diagonalization of the Hamiltonian

In the absence of a magnetic field the diagonalization
the Hamiltonian~7! is discussed by several authors and
sults into longitudinal and transverse phonon modes.11,12Ac-
cording to the most comprehensive study by Bonsall a
Maradudin,12 the Hamiltonian is diagonalized with the tran
verse and longitudinal conjugate coordinatesQl(k), Pl(k)
andQt(k), Pt(k), which are defined by

u~k!5 (
a5 l ,t

Qa~k!ea~k!, ~13a!

p~k!5 (
a5 l ,t

Pa~k!ea~k!, ~13b!

with

ea~k!5H ik/k ~a5 l !

2 isJ•k/k ~a5t !,
~14!

wherel andt represent the longitudinal and transverse mo
respectively. The eigenvalues\va(k) (a5 l ,t), or the
eigenfrequencies, are given by

v l~k!25
2pe2ns

em
~k20.181 483ak2!, ~15a!

v t~k!25
2pe2ns

em
0.036 296 7ak2, ~15b!

FIG. 2. The frequencies of the WC phonons:v l andv t are the
longitudinal and transverse modes, respectively, in the absence
magnetic field, andv1 andv2 are the hybrid modes under a ma
netic field ofB520 T. The unit of frequency isv05E0 /\57.86
31013 s21.
n

f
-

d

,

which are valid up to second order ink5uku. These frequen-
cies are plotted in Fig. 2.

When a magnetic field is present, the eigenvalues w
already obtained in Refs. 12 and 13. We present an alte
tive derivation of the eigenvalues and eigenvectors by us
the fact that the diagonalization is equivalent to solving
equations of motion. Details of the calculation are given
the appendix and we limit ourselves here to the results.

In the presence of a magnetic field the longitudinal a
transverse coordinatesQa(k) (a5 l ,t) perform cyclotron
motion which can be separated into two new coordinates

Qa~k!5 (
j 51,2

Qj a~k!, ~16!

where the momentum coordinate~6b! will now also be de-
pendent on these new coordinates~see the appendix!. The
new coordinate(aQj a(k)ea(k), denoted by the indexj, is
an admixture of longitudinal and transverse motion and
fact exhibits an elliptic motion with eigenfrequencyv j ( j
51,2) which is given by

v j
25

1

2
@~v l

21v t
21vc

2!6A~v l
21v t

21vc
2!224v l

2v t
2#,

~17!

where the6 sign is chosen such thatv1,v2. The new four
coordinatesQj a(k) ( j 51,2;a5 l ,t) satisfy the following
commutation relations:

@Qj a~k!,Qj 8a~k8!#50, ~18a!

@Qjl ~k!,Qj 8t~k8!#52 i ~21! j2d2~k!d j j 8dkk8 , ~18b!

with

d2~k!5
\vc

2m$v2
2~k!2v1

2~k!%
. ~19!

Because two of these fourQj a(k) are independent, we ca
define new annihilation and creation operatorsaj k and aj k

†

such that

Qjl ~k!5d~k!m j~k!~aj k1aj 2k
† !, ~20a!

Qjt~k!52 i ~21! jd~k!m j~k!21~aj 2k2aj k
† !, ~20b!

where

m j~k!5H uv t
2~k!2v j

2~k!u
vcv j~k! J 1/2

. ~21!

Then, the commutation relations~18a! and ~18b! become

@aj k ,aj 8k8
†

#5d j j 8dkk8 , ~ j , j 851,2!. ~22!

With these creation and annihilation operators the Ham
tonian ~7! is now diagonalized and takes the form

Hph5(
k

(
j 51,2

\v j~k!S aj k
† aj k1

1

2D . ~23!

In Fig. 2, the k dependence ofv j is shown for ns
51011 cm22 at B520 T. In the zero magnetic field limi
the frequencyv2(k) converges to the longitudinal frequenc
v l(k) which couples strongly with the remote electro

f a
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However, in large magnetic fields this phonon has a la
energy and is therefore difficult to excite. The remote el
tron will mainly couple to the low-energy excitationv1(k),
which converges tov t(k). In fact, in the absence of a mag
netic field this frequency mode does not interact with
remote electron.

IV. REMOTE WIGNER POLARON

A. Electron-phonon interaction

We consider the deformation of the lattice due to the pr
ence of a remote electron a distancez away from the WC.
Such an electron locally polarizes the WC which can
viewed as the excitation of virtual phonons of the WC. Ta
ing into account the Coulomb potential between the rem
electron at (r ,z) and the lattice electrons atRn , we obtain
the interaction energy as

H int5
e2

e (
n

H 1

A@r2Rn2u~Rn!#21z2
2

1

A~r2Rn!21z2J .

~24!

Next, we consider only small deviations from the equili
rium lattice positions and linearizeH int in the variableu(Rn)
which, with use of Eq.~6a! and the 2Dq function relation,15

results in the expression

H int5
2 i2pe2ns

eAN
(

k
u~k!•(

K

k1K

uk1K u

3exp@2zuk1K u1 i ~k1K !•r #. ~25!

If we consider the long-wavelength limit, and ignore Um
klapp processes by dropping the sum over the recipro
lattice vectorsK and keeping only theK50 term, the elec-
tron will only interact with the longitudinal phonons. Usin
the relations~13a!, ~16!, ~20a!, and ~20b!, we obtain the
second-quantized expression of the Hamiltonian as

H int5(
k

(
j 51,2

Vj k

V
exp~ ik•r !~aj k1aj 2k

† !, ~26!

where V(5N/ns) is the system area and the couplin
strengthVj k is k andz dependent and given by

Vj k5
2pe2ns

1/2

e
d~k!m j~k!exp~2kz!. ~27!

B. Polaron in a magnetic field

The full HamiltonianH for the Wigner polaron interacting
with the Wigner crystal phonons in a magnetic field is th
given by

H5
1

2m* S p1
e

c
A~r ! D 2

1Hph1H int . ~28!

Here,m* is the effective mass of the remote electron in t
static WC defined by Eq.~5!, A(r )5B3r /2 is the symmetric
gauge vector potential,Hph is the WC phonon Hamiltonian
~7! andH int is the interaction Hamiltonian given by Eq.~24!.
e
-

e

-

e
-
te

l-Using second-order perturbation theory, we obtain
ground-state energyE of the coupled system as16

E5
1

2
\vc* 1dE, ~29!

where vc* is the cyclotron frequency defined byvc*
5eB/m* c anddE is the energy correction17 caused by the
WC phonons,

dE52
1

V (
k

(
j 51,2

uVj ku2

\v j~k!
E

0

`

dtexpF2t1k2DBS tvc*

v j~k!
D G ,

~30!

with

DB~j!5
\

2m* vc*
@12exp~2j!#. ~31!

Here, we have shifted the energyE by the zero-point energy
of the phonons.

In Fig. 3~a!, the z dependence of the remote electron e
ergyE is shown forB50 and 20 T by the solid curves whe
ns51011 cm22. An electron out of the WC plane feels a
attractive force~in addition to the electrostatic repulsiv
force due to the static WC! caused by the polarization due t
the electron-WC interaction. To move an electron from t
WC plane atz50 to the remote positionz, the following
correlation energyW(z,B)5E(z,B)2E(0,B) is needed,

FIG. 3. Thez dependence ofE: the polaron energy correction
caused by the interaction of the remote electron with the W
phonons and the magnetic field forB50 and 20 T~a!, and the
energy shiftD caused by the magnetic field~b!. The electron den-
sity is taken to bens51011 cm22.
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14 346 PRB 59H. KATO AND F. M. PEETERS
which increases with increasing field strengthB. This is due
to the fact that the phonon frequencyv1 decreases withB.
This correlation energy is very likely related to the Coulom
~quasi! gaps seen in a resonant experiment when a sin
electron tunnels into the WC~Ref. 18! or biased emitter.19,9

When a tunneling electron moves from the WC plane az
50 to the quantum well located at z, the electron loses
energyW(z,B), which has to be supplied to the system, a
this is equivalent to having to apply a higher bias field. Co
sequently, this results in a shift of the tunneling resona
position. Recently, a shiftD in the position of the resonan
peak at high magnetic fields was observed.9 Within our
model this shift is given byD(z,B)5W(z,B)2W(z,0). In
Fig. 3~b! the energy shiftD is shown as a function ofz for
B520 T. This energy shift is composed of a phonon p
Dp5Wp(z,B)2Wp(0,B) and a kinetic partDk5Wk(z,B)
2Wk(0,B), which are shown by the dashed curves.

Since in the experiment of Ref. 9 there is some ambigu
about the values ofns and z, one cannot carry out a stric
comparison with our calculations. However, the experim
tally observed shift is about 3 meV forns.1011 cm22 at
B520 T, which is comparable in size to ourD(z,B). In a
previous paper, we calculated the energy shiftD under the
assumption that the remote electron couples with the p
mon excitations of the 2D electron gas.10 This explained the
experimentally observed oscillations inD with B, but there
was still a factor of 4 difference between the measured
calculated values. In this paper, this difference is improv
in the high magnetic field regime. This is due to the inclus
of the mass enhancement of the remote electron as a co
quence of the static periodic potential of the WC,8 and the
interaction with the hybrid phonon mode with frequencyv1.
The improvement is mainly achieved by the hybrid phon
mode whose frequencyv1 is smaller than the plasmon mod
and causes a large shift of the polaron energy.

In Fig. 4 theB dependence of the energy shiftD(z,B) is
shown. Notice that under the assumption of reasonable
ues for the electron density (ns51011 cm22) and the dis-
tance between the remote electron and the 2DESz
515 nm we found quantitative agreement~in magnitude
and in the functional behavior ofD with B! with the experi-
mental results of Loket al.9 in the high magnetic-field re
gion, i.e., B.10 T where the 2DES is expected to b

FIG. 4. The energy shiftD and its componentsDp and Dk as
function of the magnetic field. The dots are the experimental res
of Lok et al. We tookns51011 cm22 andz515 nm.
le

n

-
e

t

y

-

s-

d
d
n
se-

n

l-

(

strongly correlated and near the WC phase. Although i
clear that in a strict sense the WC is not formed at l
magnetic fields, this description takes into account that
electrons in the 2DES are strongly correlated and form
cally an imperfect crystallike configuration. The experime
tal data of Ref. 9 exhibit an oscillatory behavior withB,
which is not apparent in Fig. 4. This oscillation is related
the occupation of Landau levels which influences t
electron-electron screening and in turn the rem
electron-WC correlation and was explained in Ref. 10. T
latter plasmon-type of approach is more applicable in the
magnetic-field region, i.e.,B,10 T. It underestimated the
electron-electron correlation in the 2DES in the hi
magnetic-field region.

V. CONCLUSIONS

The 2DES in the presence of a strong perpendicular m
netic field forms a WC. A remote electron a distance aw
from the 2DES will be repelled due to the static lattice, bu
will feel an attractive contribution due to the polarization
the WC. We formulated the remote electron problem a
Wigner polaron problem in a magnetic field and use
second-order perturbation theory to calculate this attrac
potential. We also took into account the mass enhancem
caused by the periodic potential of the static WC. In t
absence of a magnetic field the WC has longitudinal a
transverse phonons and the remote electron interacts
dominantly with the longitudinal mode. In the presence o
magnetic field, on the other hand, these two modes are
bridized and result in two new modes. We obtained the
ordinates of these hybrid phonons by solving the equati
of motion in the Heisenberg picture.

The attractive potential between the remote electron
the WC is related to an energy shift obtained experiment
in a resonant tunneling experiment. The energy shift at h
magnetic fields is explained by the difference of the attr
tive potential at zero and nonzero magnetic field. The agr
ment between the measured and the theoretical en
shifts10 is improved by the inclusion of the hybrid phono
modes due to the magnetic field and the mass enhance
caused by the periodic potential of the WC. Agreement w
experiment is found in the high magnetic-field regime, i.
B.10 T, where the present model is expected to be ap
cable.
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APPENDIX: DIAGONALIZATION
OF THE WIGNER-PHONON HAMILTONIAN

In this appendix, the Hamiltonian~7! is diagonalized by
solving the equations of motion in the Heisenberg pictu

ts
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As explained in Sec. III, we introduce new coordinat
Q(k)5„Ql(k),Qt(k)… and P(k)5„Pl(k),Pt(k)… defined by
Eqs. ~13a! and ~13b!. Then, the commutation relations~12!
transform into

@P~k!a ,Q~k8!b#52 i\dabdkk8 , ~a,b5 l ,t ! ~A1!

and the equations of motion in the Heisenberg picture
come

d

dt
Q~ t !5

1

m
P~ t !, ~A2a!

d

dt
P~ t !52vcsJ•P~ t !1CJ 8•Q~ t !, ~A2b!

where t is the time and thek dependence is not indicate
explicitly. The momentumP(t) and associatedCJ 8 tensor are
defined by

P~ t !5P~ t !2mvc
2sJ•Q~ t !, ~A3!

CJ 85S mv l
2 0

0 mv t
2D . ~A4!

Because the differential Eqs.~A2a! and ~A2b! are linear, a
Laplace transformation reduces them to algebraic equati
We denoteQ̃(s) as the Laplace transform ofQ(t). Applying
the formula d f /dt̃(s)5s f̃(s)2 f (0) to Eqs. ~A2a! and
~A2b!, we obtain

Q̃~s!5
1

D~s!S s21v l
2 2svc

svc s21v t
2D H S s vc

2vc s D •Q1
P

mJ ,

~A5!

whereQ5Q(0), P5P(0), and

D~s!5~s21v l
2!~s21v t

2!1s2vc
2 . ~A6!

The zero points ofD(s) are denoted bys56 iv j ( j 51,2),
wherev j is the eigenfrequency of the new modes given
Eq. ~17!.

The inverse Laplace transform now leads to
g

-

s.

y

Q~ t !5 (
j 51,2

@Ress5 iv j
Q̃~s!exp~2st!

1Ress52 iv j
Q̃~s!exp~2st!#, ~A7!

where Res denotes the residue. The resulting expression

Q~ t !5 (
j 51,2

VI j~ t !•Qj , ~A8!

where

Qj5
2~21! j

~v2
22v1

2!v j
2H S v l

2v t
22v j

2 CJ 8

m D •Q1v j
2vc

2sJ•PJ ,

~A9!

andVI j (t) is a tensor which elliptically rotates the coordina
Qj and is defined by

VI j~ t !5cosv j t1sJ•
1

v jvc
S CJ 8

m
2v j

2D sinv j t. ~A10!

With the same treatment forP(t), we obtain

P~ t !5 (
j 51,2

VI j~ t !•Pj , ~A11!

where

Pj5
m

vc
sJ•S CJ 8

m
2v j

2D •Qj . ~A12!

With the new coordinates the Hamiltonian~7! becomes

Hph5(
k

(
j 51,2

\vcv j~k!2

d~k!2 H Qjl ~k!Qjl ~2k!

uv t~k!22v j~k!2u

1
Qjt~k!Qjt~2k!

uv l~k!22v j~k!2uJ . ~A13!

The commutation relations~18a! and~18b! are derived from
the definition~A9! and the factorm j (k) in Eqs. ~20a! and
~20b! originates from the term ofQj a(k)Qj a(2k) in Eq.
~A13!. The Hamiltonian~23! is derived easily from Eqs
~20a!, ~20b!, and~A13!.
.
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