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We proposed a new discretisation scheme for deriving a second-order difference equation from any system being
formulated with the weak-form theory framework. The proposed scheme enables us to extend the application range of
the recursive transfer method (RTM) and to express perfectly matching conditions for port boundaries in a discrete
fashion under the RTM framework. To evaluate the accuracy and demonstrate the validity of the proposed scheme, we
discussed the scattering problem governed by the fourth-order differential equation that was hitherto outside the RTM
application range. The difference equation can play an important role in maintaining the balance of the bending moment
and the shear force at the interface of two segments. Using the new port boundary condition, a quasi-localised wave was
extracted and found to be related to the phase shift due to Fano resonance.

1. Introduction

Using a second-order difference equation derived by the
Numerov method,1) the recursive transfer method (RTM) has
been developed to analyse electron conductance,2,3) metallic
polymers,4) and microwave scattering.5) RTM is a method of
analysing the scattering problem and extracting a localised
wave with a systematic procedure.6) However, the differential
equations to which the Numerov method is applicable are
limited to the second order without the first derivative. Thus
the application range of RTM is also limited.

To extend the application range of RTM, a new
discretisation scheme was proposed on the basis of the
weak-form theory framework; the limitation on the physical
system to which RTM is applicable was removed. Further-
more, new expressions of port boundaries were also
developed, which are consistent with the RTM procedure
and termed as the RTM-consistent port boundary condition
(PBC). This condition serves as the perfectly matching
condition in discretised systems instead of an analytical
expression that is strict in continuous systems but induces
mismatching by discretisation.7,8) The concept of perfect
matching was proposed concerning electromagnetic sys-
tems9,10) and it was also developed in elastodynamic
systems.11) Since the proposed RTM-consistent PBC has no
need to prepare an artificial absorbing layer, localised=quasi-
localised waves can be extracted with an eigenvalue problem
even if a damping wave tail reaches the ends of the analysis
domain.

The advantage of weak-form discretisation is its potential-
ity to extend RTM to various systems beyond the system
governed by the second-order differential equation. To
evaluate the accuracy and demonstrate the validity of the
proposed scheme, we discussed a scattering problem
governed by the fourth-order differential equation that was
hitherto outside the RTM application range. The difference
equation can play an important role in maintaining the
balances of the bending moment and the shear force at the
interface of two segments. By using the system that has a
strict expression of the transmission rate, the discretisation
error was investigated. The issues discussed in this study

would lead to the development of a promising method of
analysing problems in one-dimensional systems.

Recently, scattering phenomena in elastodynamic systems
such as mesoscopic waveguides12,13) and nanowires14,15) have
been attracted much attention. Although Fano resonance was
discussed under a quasi-one-dimensional system by separat-
ing a wave motion into directions parallel and perpendicular
to the propagation axis,16) in a pure one-dimensional system
governed by the second-order differential equation, any wave
induced by an incident wave emits wave skirts to the input=
output regions and does not form a stable localised wave. In a
system governed by the fourth-order differential equation,
Fano resonance does exist because a stable localised wave
can exist. Fano resonance in a quasi-one-dimensional system
has already been studied using the Green function method;16)

however, our method has the unique property that enables us
to extract a localised=quasi-localised wave that causes Fano
resonance.17,18) A quasi-localised wave is related to the
complex eigenvalue whose real part is the frequency and the
imaginary part is the lifetime of the oscillation.

This paper is organized as follows: In Sect. 2, by
introducing a fourth-order differential equation, the theoretical
framework of weak-form discretisation is developed. In
Sect. 3, the solution of a scattering problem with RTM is
summarized. New stepping matrices in the input=output ports
of a waveguide are defined; they play an important role in
expressing the RTM-consistent PBC. In Sect. 4, the accuracy
of weak-form discretisation is evaluated using the resonance
curve. A new method of extracting the localised=quasi-
localised wave is also proposed, and its application to
estimating phase shift in Fano resonance is discussed. In
Sect. 5, the results of this study are summarized. In Appendix,
details of deriving the theoretical expression of transmission
rate are summarized from the viewpoint of localised waves.

2. Weak-Form Discretisation for RTM

2.1 Functional
The elastic bar in flexural motion is governed by the

fourth-order differential equation as19)

f‘ðxÞu00g00 � ~mðxÞu þ €u ¼ 0: ð1Þ
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Here x is the space coordinate, uðxÞ is the lateral displacement
of the elastic bar, ‘ðxÞ and ~mðxÞ are functions for determining
system features. The notations A and _ indicate derivatives
with respect to space and time, respectively. When the system
is in a steady oscillation state with the angular frequency ω,
the dynamic term €u can be assumed to be �!2u, and it can be
included in the new function mðxÞ as mðxÞ ¼ ~mðxÞ þ !2. The
functional Fn for weak-form discretisation can be defined
with the test function wðxÞ as

Fn½w; u� ¼
Z xnþh

xn�h
fw00‘ðxÞu00 � wmðxÞug dx: ð2Þ

The analysis domain between the input and output terminals,
x ¼ xin and xout, was segmented into N elements as follows:
xn ¼ xin þ hn, where n (¼ 0; 1; 2; . . . ; N) is the site index and
h is the step size defined by h ¼ ðxout � xinÞ=N. By separating
the integration interval of Eq. (2) into two parts ½xn � h; xn�
and ½xn; xn þ h� and regarding the function ‘ðxÞu00ðxÞ
(¼ vðxÞ) to be not always continuous at x ¼ xn, we can
transform Eq. (2) as

Fn½w; u� ¼
Z xnþh

xn�h
wfð‘ðxÞu00Þ00 � mðxÞug dx

þ ½w0ðxÞvðxÞ � wðxÞv0ðxÞ�xnþhxn�h

þ w0ðxnÞfvðxn � 0Þ � vðxn þ 0Þg
� wðxnÞfv0ðxn � 0ÞÞ � v0ðxn þ 0Þg; ð3Þ

where vðxn � 0Þ indicates the limit lim�!0 vðxn � �Þ that
maintains the condition � > 0.

From the first term of the right hand side in Eq. (3), Eq. (1)
can be derived by the null value problem defined as what uðxÞ
satisfies Fn½w; u� ¼ 0 (8w). When the test function wðxÞ
satisfies the restrictions as

wðxn � hÞ ¼ 0; w0ðxn � hÞ ¼ 0; ð4Þ
boundary terms of vðxn � hÞ and v0ðxn � hÞ appearing in the
second term of Eq. (3) are eliminated and we can impose any
boundary condition at the input=output ports according to
the behaviour of scattering waves. Furthermore, we can also
impose the condition that vðxÞ and v0ðxÞ must be continuous
at the boundary x ¼ xn because the values wðxnÞ and w0ðxnÞ
are arbitrary in the third and fourth terms of Eq. (3). These
imply the condition in which the bending moment and shear
stress must maintain balance at the interface of the segments.
This is one of the important roles of the difference equation.
Using these features included in the functional expression,
we can transform the differential equation into the difference
equation as shown in the following section.

2.2 Interpolation of field variables
The second-order difference equation can be derived by

expressing Eq. (2) through the interpolation of fields at three
successive points. One of the suitable interpolation tools is
provided by the Hermite element developed in FEM.19) Using
the 4 � 4 matrix C� defined as

C� ¼

1 0 0 0

0 1 0 0

1 �h h2 �h3
0 1 �2h 3h2

2
66664

3
77775

�1

; ð5Þ

we can interpolate the field uðxÞ with cubic polynomials of
the variable ξ (¼ x � xn 2 ½�h; h�) as

uðxÞ ¼ f�gC�½uðxnÞT;uðxn�1ÞT�T �1 < � < 0

f�gCþ½uðxnÞT;uðxnþ1ÞT�T 0 < � < 1

(
: ð6Þ

Here the sybol T means the transpose, f�g is a shorten
expression for the four-dimensional row vector defined by
f�g ¼ ½1; �; �2; �3�, and uðxnÞ is two-dimensional field vector
uðxÞ ¼ ½uðxÞ; u0ðxÞ�T.

The test function wðxÞ can also be interpolated with
two-dimensional vector wðxÞ ¼ ½wðxÞ; w0ðxÞ�T as follows:

wðxÞ ¼
f�gC�R�wðxnÞ �1 < � < 0

f�gCþRþwðxnÞ 0 < � < 1

�
; ð7Þ

where the boundary conditions (4) was used, and 4 � 2

matrix R� is defined as R� ¼ ½I; O�T with 2 � 2 identity
and zero matrices, I and O, respectively.

2.3 Second-order difference equation
Using Eqs. (6) and (7), the functional (2) can be

transformed into

Fn ¼ wðxnÞT
X
�¼�

RT
� fn�½uðxnÞT;uðxnþ�1ÞT�T; ð8Þ

where fn� is a 4 � 4 matrix defined by

fn� ¼ ‘ xn þ �h

2

� �
A� �m xn þ �h

2

� �
B�; ð9Þ

with

A� ¼ CT
�

Z h

�h
f�g00Tf�g00 d�C�; ð10Þ

B� ¼ CT
�

Z h

�h
f�gTf�g d�C�: ð11Þ

Here the functions mðxÞ and ‘ðxÞ are expressed with the
constant values mðxn þ h=2Þ and ‘ðxn þ h=2Þ in the interval
½xn; xnþ1� to reflect the stepwise change assumed in Sect. 4.1.
It is also possible to use the polynomial interpolation function
if the functions mðxÞ and ‘ðxÞ are continuous. The null
value problem yields the second-order difference equation
as

cnuðxn�1Þ þ bnuðxnÞ þ anuðxnþ1Þ ¼ 0; ð12Þ
where cn, bn, and an are 2 � 2 matrices defined by

cn ¼ RT
� fn�½O; I�T; ð13Þ

bn ¼ ðRT
� fn� þ RT

þ fnþÞ½I; O�T; ð14Þ
an ¼ RT

þ fnþ½O; I�T: ð15Þ
Under the RTM framework, the field vectors uðxnÞ are

assumed to be transferred according the rule

uðxnþ1Þ ¼ SnuðxnÞ: ð16Þ
Here Sn is the 2 � 2 matrix that was termed as the stepping
matrix2) or the recursion matrix.3) Equations (16) and (12)
yield

Sn�1 ¼ �ðbn þ anSnÞ�1cn: ð17Þ
If the terminal value SN is given, all values of Sn (n < N) can
be obtained by the successive use of Eq. (17) [see Eq. (23) in
Sect. 3.1.2].
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3. Scattering Problem

3.1 RTM
3.1.1 Discretised modes in port and stepping matrices

Let us consider the scattering problem caused by an
incident wave coming from x ¼ �1 and scattered in the
region xin < x < xout. The incident wave involves a reflection
wave and a transmission wave in the input port region,
x < xin (n < 0), and the output port region, x > xout (n > N),
respectively.

RTM is a numerical method of connecting various waves
generated in the scattering region to the wave modes in the
port region. When the input=output port region is assumed to
be extended to an infinite and uniform space, the coefficients
in Eq. (12) can be regarded as independent of n. Therefore,
using the constant coefficients cprt, bprt, and aprt which show
no n dependence, we can put cn ¼ cprt, bn ¼ bprt, and an ¼
aprt in extended port regions. Here the constants cprt, bprt, and
aprt are respectively defined by Eqs. (13), (14), and (15) at
any site in the port regions. Then, the solution of Eq. (12) can
be found with the generalized eigenvalue problem.20) Those
eigenmodes serve to connect the scattered wave to the
reflection and transmission waves at port boundaries, while
maintaining consistency in the discretised system.

The translationally invariant wave in extended port regions
satisfies

A� ¼ e�hB�; ð18Þ
where Φ is a four-dimensional vector defined by � ¼
½uT

0 ; e
�huT

0 �T, and the matrices A and B are given by

A ¼ cprt O

O I

" #
; B ¼ �bprt �aprt

I O

" #
: ð19Þ

Equation (18) is a generalized eigenvalue problem20) with
four eigenvalues e�h and eigenvectors � ¼ ½XT; e�hXT�T.

Since the extended input=output ports are assumed to be
uniform, both η and �� are wave constants. Here the wave
constant is defined as � ¼ � þ ik that is composed of the wave
number k and the damping=growing constant γ. When the
wave constant η is pure imaginary, � ¼ �ik with a positive k,
the corresponding eigenvectors Xð�Þ

t are for travelling waves
that propagate in the positive=negative direction of the x-axis
according to the double sign. Two remaining wave constants,
��, have non-zero real parts; therefore, the eigenvectors
Xðgrw=dmpÞ

m indicate waves whose amplitudes are grown=
damped with the rates �Re½��, respectively.

Let us introduce 2 � 2 matrices by XðdmpÞ
� ¼ ½Xð�Þ

t X
ðdmpÞ
m �

(XðgrwÞ
� ¼ ½Xð�Þ

t XðgrwÞ
m �), and define the matrices K ðdmpÞ

� and
K ðgrwÞ
� as

K ðdmpÞ
� ¼ XðdmpÞ

�
e�ikh 0

0 e��h

" #
ðXðdmpÞ

� Þ�1; ð20Þ

K ðgrwÞ
� ¼ XðgrwÞ

�
e�ikh 0

0 e�h

" #
ðXðgrwÞ

� Þ�1: ð21Þ

These matrices K ðdmp=grwÞ
� satisfy Eq. (17) and belong to a

type of stepping matrices. The role of Kð&Þ
� (� ¼ �, & ¼

dmp=grw) is dual: (i) decompose the field vector uðxnÞ into
components of travelling and damping=growing waves;
(ii) multiply the phase factor eikh or e�h according to the
travelling or damping=growing waves.

3.1.2 Reflection and transmission coefficients
At input and output ports, the field uðxnÞ in the scattering

region must be connected to waves in port regions. By using
the stepping matrices K ðdmp=grwÞ

� , waves in port regions can be
expressed as

uðxnÞ ¼
ðK ðdmpÞ

þ Þnuin þ ðK ðgrwÞ
� Þnurf n � 0

ðK ðdmpÞ
þ Þðn�NÞutr n � N

(
: ð22Þ

Here uin, urf , and utr are the vectors composed of the
amplitudes of the input, reflection and transmission waves,
respectively.

According to Eq. (22), we can obtain the condition on Sn
at the boundary of the output port as

SN ¼ K ðdmpÞ
þ : ð23Þ

Using Eqs. (16) and (22), the field variable uðx1Þ can be
expressed by the stepping matrices S0 and K ðdmp=grwÞ

� as

S0ðuin þ urfÞ ¼ K ðdmpÞ
þ uin þ K ðgrwÞ

� urf : ð24Þ
Here Eq. (22) was assumed to be valid at n ¼ 1. Although a
strict expression of the port boundary condition (PBC) is
possible in continuous systems,7) it involves mismatch
accompanied by discretisation. On the other hand, Eq. (24)
provides PBC without any mismatches in discretised systems
under the RTM framework. Therefore, it can be termed as the
RTM-consistent PBC.

Using Eq. (24) we can express the reflection wave as

urf ¼ �ðS0 � K ðgrwÞ
� Þ�1ðS0 � K ðdmpÞ

þ Þuin: ð25Þ
By transferring the field variable of n ¼ 0 with Eq. (16), the
transmission wave is expressed as

utr ¼ SN�1 � � � S2S1S0ðuin þ urfÞ: ð26Þ
The reflection and transmission coefficients r and t are

found to be r ¼ ~X
ðgrwÞ
t� urf and t ¼ ~X

ðdmpÞ
t+ utr. Here ~X

ðgrwÞ
t� and

~X
ðdmpÞ
t+ are the first row vectors of ðXðgrwÞ

� Þ�1 and ðXðdmpÞ
þ Þ�1,

respectively. The transmission rate T and the reflection rate R
are expressed as R ¼ jrj2 and T ¼ jtj2. The energy flux of
the system, J, can be defined as J ¼ �! Im½u	ð‘ðxÞu00Þ0 �
u0	‘ðxÞu00�,21) which can be expressed as J ¼ 2

ffiffiffiffiffiffiffi
m‘

p
!kjaj2

for the travelling wave with a wave number k and an
amplitude a. Therefore, the energy conservation can be
expressed as R þ e�2’1T ¼ 1.

3.2 Error of discretised wave number
When ‘ðxÞ ¼ 1 and mðxÞ ¼ m0ðconstantÞ, the continuous

system has travelling waves that can be expressed as
uðxÞ / eiðm0Þ1=4x with the wave number ðm0Þ1=4. Since the
eigenvalue problem of Eq. (18) is a quartic equation, the
discretised system also has an algebraic expression for
travelling waves with a wave number k. The discrete wave
number k can be developed in the series with respect to h as
k ¼ m1=4

0 � 1
2880

m5=4
0 h4 þ � � �. This means that the discrete

wave number k approximates the continuous wave number
m1=4

0 with an error on the h4 order.

4. Analysis Accuracy of Scattering Problem under RTM
Framework

4.1 Discretisation accuracy during resonance
Resonance occurs in the system governed by Eq. (1) when

the functions ‘ðxÞ and mðxÞ have the form as
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‘ðxÞ ¼

k�20 e�2’0 x < �d=2
½k�20 =ð1 þ rbÞ�e�2’0 �d=2 < x < 0

½k�20 =ð1 þ rbÞ�e�2ð’0þ’1Þ 0 < x < d=2

k�20 e�2ð’0þ’1Þ d=2 < x

8>>>><
>>>>:

; ð27Þ

mðxÞ ¼

k20e
�2’0 x < �d=2

k20ð1 þ rbÞe�2’0 �d=2 < x < 0

k20ð1 þ rbÞe�2ð’0þ’1Þ 0 < x < d=2

k20e
�2ð’0þ’1Þ d=2 < x

8>>>><
>>>>:

: ð28Þ

Here the parameter k0 is the wave number of the incident
wave, and rb is the modulation factor for the scattering
potential defined in Appendix.

Figure 1 shows the k0 dependence of the transmission rate
T in the panel (a) and the relative error in the panel (b). The
geometry and physical parameters of the system are as
follows: �xin ¼ xout ¼ 1:2125, d ¼ 0:2667, N ¼ 97, rb ¼
�2, ’0 ¼ 2:1802, and ’1 ¼ �0:1. The resonance curve
reaches its maximum and minimum at k0d ¼ 0:52184 and
0.52365, respectively. The lengths and the segmentation
number N were defined so that the boundary of the scattering
region �d=2 is on any of the segmentation points xn while
keeping jxinj and xout to be nearly one.

The asymmetric curve in Fig. 1(a) is a typical feature of
Fano resonance17) caused by the interaction between an
incident wave and a quasi-localised wave. The extraction
of quasi-localised wave is discussed in the following
Sect. 4.2.1. The solid curve was obtained by RTM in the
discretised system and the dots were obtained by an analytic
method in the continuous system. The derivation of the
analytic expression is summarized in Appendix. Using the

values of the continuous system, Tcn, the error of the
discretised system can be evaluated by the absolute value of
ðT � TcnÞ=Tcn, as shown in Fig. 1(b). Since Tcn is very small
when k0d 
 0:52365, the relative error tends to be large.
However, the error is less than 10�4 when k0d is beyond this
range.

4.2 Quasi-localised wave
4.2.1 Eigenvalue problem for localised waves

We have developed a novel method of extracting a quasi-
localised wave while keeping consistency under the RTM
framework. Substituting the function mðxÞ by k40pr þ
k20fmðxÞ=k20pr � k20prg with the wave number k0 and its
preliminary value k0pr, we can separate the coefficients of
Eq. (12) into two parts according to whether they are
proportional to k20 as �cn ! �cð1Þn � k20 �c

ð2Þ
n , �bn ! �b

ð1Þ
n � k20

�b
ð2Þ
n ,

and �an ! �að1Þ
n � k20 �a

ð2Þ
n . When k0 ¼ k0pr both sides match

exactly. Thus Eq. (12) can be expressed as

�cð1Þn uðxn�1Þ þ �b
ð1Þ
n uðxnÞ þ �að1Þ

n uðxnþ1Þ
¼ k20f �cð2Þn uðxn�1Þ þ �b

ð2Þ
n uðxnÞ þ �að2Þ

n uðxnþ1Þg; ð29Þ
for 0 � n � N. If 2ðN þ 1Þ-dimensional vector Utot is
introduced as Utot ¼ ½uðx0ÞT;uðx1ÞT;uðx2ÞT; . . . ;uðxNÞT�T,
Eq. (29) serves as an eigenvalue problem with the eigenvalue
k20. Using the boundary conditions

uðx�1Þ ¼ ðK ðgrwÞ
� Þ�1uðx0Þ; ð30Þ

uðxNþ1Þ ¼ K ðdmpÞ
þ uðxNÞ; ð31Þ

we can eliminate the two vectors uðx�1Þ and uðxNþ1Þ, which
appear when n ¼ 0 and N, respectively, and belong outside of
the analysing region. These conditions are another type of
RTM-consistent PBC for expressing that scattered waves are
perfectly absorbed in port regions without any reflection.
Since the stepping matrices K ðdmp=grwÞ

� are defined using the
second-order difference equation (12), Eqs. (30) and (31) are
consistent with the RTM procedure and waves in the analysis
domain can be seemlessly connected to eigenmodes in the
infinite input=output regions. Furthermore, the RTM-consis-
tent PBC enables us for the first time to extract a localised
wave using the procedure of the eigenvalue problem as
discussed in the latter half of this section.

The eigenvalue k20 is found using the eigenvalue problem
being defined by Eq. (29) on the assumption that the stepping
matrices K ðtmpÞ

þ and K ðgrwÞ
� are defined by the preliminary

value k0pr. The consistency between k0 and k0pr is realized
with the iterative use of the eigenvalue k0 for the preliminary
k0pr.

Figure 2 shows the quasi-localised wave obtained with
eleven iterations about k0. The difference of k0 between the
last successive two iterations is bounded to 10�7 in
magnitude. The oscillation of the localised wave is shown
using several curves of different phase factors ei� (� ¼
0:25� � p, p ¼ 0; 1; . . . ; 7). When the single cycle T (¼ 2�=!)
passes, the phase α increases by 2� and the localised
wave returns to its initial state. Not only damping wave
tails but also travelling wave skirts reach both ends of the
simulation domain, x ¼ xin; xout; however, no wave disturb-
ance appears because the RTM-consistent PBC works
effectively.

Since travelling wave skirts convey powers and result in a
finite lifetime of the quasi-localised wave, the wave number
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Fig. 1. Resonance curve and its accuracy. (a) Transmission rates T and
Tcn for the discretised system (solid curve) and continuous system (dots),
respectively. (b) The relative error of the transmission rate.

J. Phys. Soc. Jpn. 85, 054001 (2016) H. Kato and H. Kato

054001-4 ©2016 The Physical Society of Japan



kL derived from eigenvalue k20 has an imaginary part
expressed as

kLd ¼ 0:52213 þ i0:00066: ð32Þ

4.2.2 Phase shift and semi-analytic fitting with kL
To understand the meaning of the complex frequency in

Eq. (32), we made an analogy based on the scattering theory
of the Schrödinger equation.22) The reflection and trans-
mission coefficients are analytic functions of the input wave
umber k0, and the resonance curve is determined by a single
pole in the analytically extended k0-space. The S-matrix can
be expressed by

S ¼ r t0

t r0

" #
; ð33Þ

where r and t (r0 and t0) are the reflection and transmission
coefficients when the incident wave comes from x ¼ �1
(x ¼ 1). Since the system conserves energy, the S-matrix is
unitary and satisfies det S ¼ ei2	ðk0Þ with a real phase shift
	ðk0Þ.

Regarding the complex wave number kL as a single pole
in the k0-space, the quantity ei2	ðk0Þ can be approximated
as:23)

ei2	ðk0Þ 
 ei2	bgðk0Þ
k0 � k	L
k0 � kL

; ð34Þ

where 	 represents the complex conjugate and 	bgðk0Þ is a
background phase that appears when there are no scatterers.
Defining the phase shift 	resðk0Þ caused by the pole as
ei2	resðk0Þ ¼ ðk0 � k	LÞ=ðk0 � kLÞ and using the relation

	resðk0Þ ¼ cot�1
k0 � Re½kL�

Im½kL�
� �

; ð35Þ

the phase shift 	ðk0Þ of the continuous system can be
estimated by 	bgðk0Þ þ 	resðk0Þ. This is a semianalytic
expression of the phase shift derived by a single pole model.
The real and imaginary parts of kL indicate the resonance
centre and width, respectively.

Figure 3 shows k0 dependence of the phase shifts. In
panel (a), the dotted line is the background phase shift
	bgðk0Þ obtained by the linear fitting of values in the region
k0d < 0:511. The phase shift 	ðk0Þ derived from the
continuous system is well approximated by 	bgðk0Þ þ 	resðk0Þ.
Panel (b) shows the discrepancies of 	ðk0Þ and 	bgðk0Þ þ
	resðk0Þ. Except for the values near the resonance centre,
the discrepancies are sufficiently small for practical use;
therefore, it convinces us of the validity of the complex
frequency.

5. Conclusions

To extend the application range of RTM, we proposed the
weak-form discretisation scheme that enables us to derive the
second-order difference equation. This scheme is generally
applicable to any system being formulated with the weak-
form theory framework. The RTM-consistent PBC was also
proposed to express the perfect matching between scattered
waves and port modes while maintaining consistency under
the RTM framework. This PBC is not always strict in
continuous systems; however, it involves no spurious
reflection in discretised systems even if damping tails or
propagating wave skirts from a localised=quasi-localised
wave reach port boundaries.

Provided that the frequencies are far from the resonance
centre, the relative error of transmission rate obtained by
RTM is less than 10�4. In practical sense, the discretised
system has sufficient accuracy because the system can predict
the resonance centre and the phase shift concerning Fano
resonance. In particular, the quasi-localised wave can be
extracted by using a nonreflecting feature of RTM-consistent
PBC.
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Appendix: Transmittance of the Continuous System

Since the functions ‘ðxÞ and mðxÞ have elementary forms,
we can obtain analytic values of the transmission rate Tcn. By
introducing the quantity defined by vðxÞ ¼ ‘ðxÞu00ðxÞ and the
column vector uðxÞ ¼ ½uðxÞ vðxÞ�T, the governning equation
can be transformed into the matrix form as
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Fig. 2. Localised wave causing Fano resonance.
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Fig. 3. Tracing of the phase shift 	ðk0Þ with the background shift 	bgðk0Þ
and the shift 	resðk0Þ determined by the complex wave number kL.
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u00 ¼ k2Mu; ðA:1Þ
where

MðxÞ ¼ 0 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðxÞ‘ðxÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðxÞ‘ðxÞ

p
0

" #
; ðA:2Þ

k2ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
mðxÞ
‘ðxÞ

r
: ðA:3Þ

Using Eqs. (27) and (28), the composite functionsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðxÞ=‘ðxÞp

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðxÞ‘ðxÞp

can be expressed asffiffiffiffiffiffiffiffiffiffi
mðxÞ
‘ðxÞ

r
¼ k20 jxj > d=2

k20ð1 þ rbÞ jxj < d=2

(
; ðA:4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðxÞ‘ðxÞ

p
¼ e�2’0 x < 0

e�2ð’0þ’1Þ x > 0

�
: ðA:5Þ

Furthermore, using the matrix QðxÞ defined by

QðxÞ ¼ 1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðxÞ‘ðxÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðxÞ‘ðxÞ

p
" #

; ðA:6Þ

and transforming the vector uðxÞ into UðxÞ ¼ Q�1uðxÞ, we
can derive two equations of the Schrödinger type as

�u001 þ 
ðxÞu1 ¼ �k20u1; ðA:7Þ
�u002 � 
ðxÞu2 ¼ k20u2; ðA:8Þ

where u1 and u2 are first and second elements of the vector
U, respectively. The function 
ðxÞ is the box-type potential
defined by


ðxÞ ¼
0 jxj > d=2

k20rb jxj < d=2

(
: ðA:9Þ

In Fig. A·1, spatial dependences of the first and second
component are illustrated using an analogy of the quantum
particle possessing the wave function within the potential
function 
ðxÞ. Since the first component represents a particle
in the potential well, its wave tails penetrate the input=output
port regions beyond the potential well. On the other hand, the
second component corresponds to a free particle that is
scattered by the potential barrier. The input, reflection and
transmission waves governed by Eq. (1) are expressed using
these wave skirts appearing in the input=output port regions.
Under the scattering problem of the Schrödinger type
equation, the incident wave must have a positive energy
similar to the particle with the energy k20, as shown in
panel (b); the localised wave never appears regardless of
whether the potential type is a well or a barrier. However, the
wave of the fourth-order differential equation always has the
localised wave components as shown in panel (a). This is the

remarkable feature of the system governed by the fourth-
order differential equation and plays an important role in the
appearance of the Fano effect.

Since the composite functions
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðxÞ=‘ðxÞp

andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðxÞ‘ðÞxp

are almost constant except for stepwise changes
at x ¼ 0 and �d=2, the wave components can be expressed
by the superposition of the fundamental solutions as
follows:

u1ðxÞ ¼

b0e
k0x x < �d=2

a1þeik1x þ a1�e�ik1x �d=2 < x < 0

a2þeik1x þ a2�e�ik1x 0 < x < d=2

b3e
�k0x x > d=2

8>>>><
>>>>:

; ðA:10Þ

u2ðxÞ ¼

aine
ik0x þ arfe

�ik0x x < �d=2
b1þek

0
1
x þ b1�e�k

0
1
x �d=2 < x < 0

b2þek
0
1
x þ b2�e�k

0
1
x 0 < x < d=2

atre
ik0x jxj < d=2

8>>>><
>>>>:

: ðA:11Þ

Here k1 is defined by k1 ¼ k0j1 þ rbj1=2, which is the wave
number modulated by the potential 
ðxÞ. The coefficients for
travelling waves are denoted by ain, arf , atr, a1�, and a2�, and
the coefficients for the damping=growing waves are denoted
as b0, b1�, b2�, and b3. These twelve coefficients except the
amplitude of the incident wave, ain, can be determined by the
boundary conditions at x ¼ 0 and �d=2 as follows:

lim
�!0

½Qð0 � �ÞUð0 � �Þ � Qð0 þ �ÞUð0 þ �Þ� ¼ 0; ðA:12Þ
lim
�!0

½Qð0 � �ÞU0ð0 � �Þ �Qð0 þ �ÞU0ð0 þ �Þ� ¼ 0; ðA:13Þ

lim
�!0

Q
�d
2

� �

� �
U

�d
2

� �

� �
� Q

�d
2

þ �

� �
U

�d
2

þ �

� �� �
¼ 0; ðA:14Þ

lim
�!0

Q
�d
2

� �

� �
U0 �d

2
� �

� �
� Q

�d
2

þ �

� �
U0 �d

2
þ �

� �� �
¼ 0: ðA:15Þ

The components u1ðxÞ and u2ðxÞ do not interact with each other when ’1 ¼ 0 or the composite function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðxÞ‘ðxÞp

has no
stepwise change. The interaction is induced so as to satisfy the boundary conditions Eqs. (A·12) and (A·13) with a nonzero ’1.
The reflection and transmission rates are expressed by R ¼ jarf=ainj2 and T ¼ jatr=ainj2, respectively.

(a)

(b)

Fig. A·1. Coupled wave components of the Schrödinger type governed by
the fourth-order differential equation. (a) First component of the localised
wave trapped in the potential well. (b) Second component of travelling waves
reflected and transmitted with the potential barrier.
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