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Thin nanowires of a metal have a multishell structure in which several deformed helical shells are stacked.
The purpose of this paper is to give a perspective on the electron state in a helical nanowire based on the
Riemann geometrical formulation of quantum mechanics within the continuum approximation of a wire. The
helical configuration of atoms in the wires results in a sort of vector potential, and the electron state is
modulated by the winding number and the shear modulus of the shell. The energy dispersion curve depends on
the imbalance of the slide and distortion angles of the wire.
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Recently, quantized conductance at room temperature has
been investigated through the metallic nanowires formed at
the elongated point contact.1–3 Especially, in the nanowire of
gold, the relation between the conductance and the atomic
configuration is clarified by the combination of the measure-
ments of the conductance by the STM and the structure by
the TEM.2 At thin nanowires the existence of the Multi He-
lical Shell structure(MHS) is confirmed through these
experiments,4,5 whose helical structure is enhanced as the
diameter of a wire decreases. The same helical structure is
also discussed regarding the wires of Ti,6 Pt,7 Pb, and Al.8

This structure is considered widely present at the metal wire.
A shell in MHS is formed by the lattice with a shear strain,
which affects the radius and pitch of the helix.4

A study about the electron state in a helical wire pointed
out a possibility of shifts and crosses of the energy dispersion
curve, which affect the channel number of the conductance.9

This discussion treats the effect of torsion around the wire
axis but neglects the slide along the axis. One of the pur-
poses of this paper is to propose a model about the electron
state in a helical wire which is affected by both the torsion
and slide along the wire axis. An electron motion in the
crystal with a dislocation has been discussed by applying a
Riemann geometrical formulation.10 Because of the similar-
ity of the structure between the dislocation in a crystal and
the helical wire, we apply a Riemann geometrical formula-
tion to discuss the electron state in a helical wire.

We introduce the hypothesis that the electron state is ex-
pressed by a localized base even in a deformed wire. This
localized base reduces to the Wannier basis when the defor-
mation is relaxed. Then, the local motion of an electron from
the ith site to thej th site is determined independently from
the global structure of the wire and the motion is reduced to
a free electron in a relaxed space without deformation. If we
denote the location of theith site in the deformed space byxi
andji in the relaxed space, the transition matrix satisfies the
relationkx jstid uxistfdl=kj jstid ujistfdl. Here,ti and tf are times
to occupy the initial and final sites. Using continuum ap-
proximation to the sites, the motion of an electron in the
potentialU at the relaxed space is governed by a Lagrangian

L =
m

2
Sdj

dt
D2

− U, s1d

with an effective massm. Here, the site index is abbreviated
because of the continuum approximation. The potentialU is
introduced to entrap the electron in a wire, which is assumed
to be the well potential given by

Usjd = H0 sinside of the wired
` soutside of the wired J . s2d

If we use the rectangular coordinate, the transition matrix
G=kjstid ujstfdl is expressed in the path-integral formulation
as follows:

G =E DjstdexpF i

"
E

0

T

Lsj̇,jddtG . s3d

Here, the symbolDjstd stands for the path-integration and
T= tf − ti. The motion of an electron is related to the square of
infinitesimal distancedj2. If the relation betweendj anddx
is determined, the motion of an electron can be expressed by
a quadratic form of displacement vectordx in a deformed
space. This quadratic form is the fundamental form of Rie-
mann geometry and is the starting point of its quantization.10

In Fig. 1, the outer shell with radiusR (a), which is a
component of the multi-shell structure, and its unfolding dia-
gram(b) are shown. The helical shell is characterized by two
angles,aR and bR. The slide along thez-axis is determined

FIG. 1. A schematic diagram of the helical shell in a nanowire
(a) and its unfolded diagram(b).
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by angleaR, which is related to the absolute value of the
Burgers vectorb=2pR tanaR. The torsion around thez-axis
is subjected by anglebR, which determines the pitch of the
helix LH=2pR/ tanbR. In Fig. 1(b), the length of the chiral
vector is denoted by an arrow with a symbolC, whose size is
measured along the circumference of a wire represented by
C=2pR=d cossbR−aRd /cosbR with d as a size of the shell
along the crystal lattice.4

Using the cylindrical coordinates, the relation between a
displacement of an electron in a helical wiredx
=sdr ,du ,dzd and that in a relaxed spacedj=sdr ,dq ,dzd is
given by

dj = drer + scosbrdu + sinbdzdeu/cosg

+ scosadz− sinardudez/cosg, s4d

whereer, eu, andez are unit vectors in the cylindrical coor-
dinates,a=aRr /R, b=bRr /R, g=b−a. The transformation
tensorB is defined by the following equation:

dj = s1 + Bd ·dx. s5d

Using relation(5) we transform the path ofj into the path of
x in Eq. (3). For this transformation we need the Jacobian of
functional10 J=pt]jstd /]xstd, which is given by

J = expF−E
ti

tf

ṙ
]

]r
trhBjdtG . s6d

Then the LagrangeanL in Eq. (3) becomes as follows:

L =
m

2
Fṙ2 +

1

cosg
hscosbr u̇ + sinbżd2

+ scosaż− sinar u̇d2jG −
"

i
ṙ

]

]r
trhBj − U − DV1. s7d

Here,DV is a quantum correlation defined by

DV1 = −
"2

8m

1

r2 , s8d

which is related to the Weyl ordering of operators in the
cylindrical coordinates.11,12

A classical HamiltonianHc of the system is obtained by
the Legendre transformation on Eq.(7), whose explicit form
is given by

Hc =
1

2m
FSpr −

"

i

] trhBj
]r

D2

+ Scosa
pu

r
+ sinapzD2

+ Scosbpz − sinb
pu

r
D2G + U + DV1, s9d

wherepr, pu, andpz are momentums conjugate tor, u, andz,
respectively.

On the other hand, according to the procedure of quanti-
zation by use of the path-integral method,12,13 a quantum
Hamiltonian which reduces to the Lagrangian(7) is obtained
by the Weyl ordering of the classical Hamiltonian(9) with
the momentum operators,

pr =
"

i
S ]

]r
+

1

r
+

g8

2
tangD , s10d

pu =
"

i

]

]u
, s11d

pz =
"

i

]

]z
, s12d

with g8=gR/R, the quantum HamiltorinanH of an electron
in a helical wire is given by

H = −
"2

2m
FS ]

]r
−

] trhBj
]r

D2

+
cosa

r
S ]

]r
−

] trhBj
]r

D
+ Scosa

r

]

]u
+ sina

]

]z
D2

+ Scosb
]

]z
−

sina

r

]

]u
D2G + U

+ DV1 − DV2. s13d

Here, we use the Laplace-Beltrami operator in Riemann
space at the Hamiltonian and introduce the quantum correc-
tion DV2 due to the Weyl ordering, which is defined by

DV2 = −
"2

8m
FS1

r
+ g8 tangD2

−
2

r2 +
2g8

cos2 g
G . s14d

WhenaR=0 in the limit of smallbR, the HamiltonianH
given by Eq.(13) reduces to that given by Okamotoet al.9

When there is no torsionbR=0 and up to the first order ofaR
is considered, the Hamiltonian(13) results in

H = −
"2

2m
Fpr

2 + Spu

r
+ apzD2

+ pz
2G + U. s15d

If the electron state is in an eigenstate along thez-axis andpz
can be regarded as ac-number, this Hamiltonian subjects the
motion of an electron in the vector potential

A =
aR

R
r2pzeu. s16d

This vector potential is equivalent to that of a uniform mag-
netic field and we can expect the Aharonov-Bohm effect on
the motion around the circumference of a wire.

FIG. 2. Dispersion relation of the electron energy whenaR

=17° b=14° (a), aR=0° b=14° (b), andaR=17° b=0° (c). Thin
curves foraR=bR=0° are also depicted for the sake of comparison.
The meaning of the indexes is discussed in the text.
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If the wave functioncsr ,u ,zd is separated intocsr ,u ,zd
=xsrdeisnu+kzd with k as a wave number along thez-axis andn
an integer(which is determined by the boundary condition
aboutu), the energy eigenvalueE is decided by the eigen-
value problem of the functionxsrd:

S d

dr
+ aD2

x + S1

r
+

g8

2
tangDS d

dr
+ aDx +

2Em

"2 x

− FScosa
n

r
+ sinakD2

+ S− sinb
n

r
+ cosakD2Gx

+ DVx = 0. s17d

Here,a=]trhBj /]r andDV=DV1−DV2. Because of the well
potential given by Eq.(2), the functionxsrd must satisfy the
boundary conditions: limr→0 rx8sRd=0 andxsRd=0.

By means of numerical analysis on a discretized represen-
tation of Eq.(17), we obtain the eigenvalue ofE and sum-
marize it in Fig. 2. There are three cases where different
values ofaR and bR are given:(a) aR=17°, bR=14°, (b)
aR=0°, bR=14° and(c) aR=17°,bR=0°. The thin curves are
for the case ofaR=0° andbR=0°, which are given for the
sake of comparison. In Fig. 2(a), the solid and thin curves are
almost aligned with each other and cannot be distinguished.
This means that when the slide and the torsion are almost
balancedaR.bR, the energy dispersion is not affected by
the helical structure except by the modulation on the reflec-
tion and transmission rates at wire terminals.

When the parametersaR andbR vanish, the functionxsrd
reduces toJnsznpr /Rd whereJn is the Bessel function ofnth
order andznp is its zero point, i.e.,Jnsznpd=0sp=1,2,3 ,̄ d.
The index labeled for each curves in Fig. 2 is a pair of these
numberssn,pd. When there is an imbalance between the val-
ues ofaR andbRsgRÞ0d, the dispersion relation shifts along
the axis of the wave numberk. The shift increases with the

value of the indexn, so that a possible crossing will occur
between the dispersion curves. As already discussed, if the
Fermi level is located at this crossing point, the channel
number of conduction will be affected.9 Even though the
value of the reportedgR or imbalance is small,4 the exter-
nally applied torsion involves a large imbalance and the elec-
tron state will be affected.

If the wire is composed of a single shell with radiusR, the
wave function becomes a two-dimensional function ofu and
z and given bycsu ,zd=eisnu+kzd sn=0,1,2 ,̄ d. The energy
eigenvalueEsh of a two-dimensional electron on a shell is
expressed by

Esh=
"2

2mR2F n2

qR
cos2 gR

+ qRHkR−
n

qR
cossbR + aRdsingRJ2G s18d

with qR=sin2 aR+cos2 bR. The electron state on a single he-
lical shell is a one-dimensional wave which is quantized by
an integern and propagates along the wire axis with a wave
numberk. From Eq.(18), we can recognize that the disper-
sion curve shifts whenaR andbR is imbalance orgRÞ0 and
its shift depends on the integern. This dependence of the
index n is similar to that appearing in Fig. 2 for a solidity
wire.

In this paper we have given a model in which a helical
structure of a nanowire is characterized by two parameters,
the slide angleaR and the torsion anglebR, and the motion
of an electron in a helically deformed wire is mapped onto a
locally free motion in a space without the deformation. A
global structure of a helical wire is taken into account on a
Hamiltonian with an effective vector potential due to a heli-
cal curvature. According to this model, a possible shift and
crossing of the energy dispersion curves is discussed, which
depends on the imbalance of the anglesaR andbR.
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