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Electron-state effect induced by helical structure of metal nanowires formulated by path
integrals in Riemann space
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Thin nanowires of a metal have a multishell structure in which several deformed helical shells are stacked.
The purpose of this paper is to give a perspective on the electron state in a helical nanowire based on the
Riemann geometrical formulation of quantum mechanics within the continuum approximation of a wire. The
helical configuration of atoms in the wires results in a sort of vector potential, and the electron state is
modulated by the winding number and the shear modulus of the shell. The energy dispersion curve depends on
the imbalance of the slide and distortion angles of the wire.
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Recently, quantized conductance at room temperature has m( d¢\?
been investigated through the metallic nanowires formed at = 2o\dt) U, (1)

the elongated point contatt® Especially, in the nanowire of

gold, the relation between the conductance and the atomMith an effective mass. Here, the site index is abbreviated
configuration is clarified by the combination of the measurebecause of the continuum approximation. The potehtizd
ments of the conductance by the STM and the structure by\troduced to entrap the electron in a wire, which is assumed
the TEM2 At thin nanowires the existence of the Multi He- 10 be the well potential given by

lical Shell structure(MHS) is confirmed through these {0 (inside of the wire
u(® =

experiment$;® whose helical structure is enhanced as the . .
 (outside of the wirg

diameter of a wire decreases. The same helical structure is

also discussed regarding the wires o Rt/ Pb, and AP |f we use the rectangular coordinate, the transition matrix
This structure is considered widely present at the metal wireG=(£(t;)| &(t;)) is expressed in the path-integral formulation
A shell in MHS is formed by the lattice with a shear strain, gs follows:
which affects the radius and pitch of the helix. -

A study about the electron state in a helical wire pointed _ 1 y
out a possibility of shifts and crosses of the energy dispersion 6= f Dg(t)exp[ h fo L& g)dt} ' ®
curve, which affect the channel number of the conducténce.
This discussion treats the effect of torsion around the wirdiere, the symbolD&(t) stands for the path-integration and
axis but neglects the slide along the axis. One of the purl =t;—t;. The motion of an electron is related to the square of
poses of this paper is to propose a model about the e|ectrdﬁfinitesirr_1al distance;lg_z. If the relation betweenlé and dx
state in a helical wire which is affected by both the torsioniS determined, the motion of an electron can be expressed by
and slide along the wire axis. An electron motion in the@ duadratic form of displacement vectdx in a deformed

crystal with a dislocation has been discussed by applying §P2ce: This quadratic form is the fundamental form of Rie-
Riemann geometrical formulatidi.Because of the similar- mann geometry and is the starting point of its quantizafon.

ity of the structure between the dislocation in a crystal and In Fig. 1, the outer' shell with radiug (a_), which Isa.
the helical wire, we apply a Riemann geometrical formula_component of the multl-shel_l structure, and its un_foldmg dia-
tion to discuss t’he clectron state in a helical wire gram(b) are shown. The helical shell is characterized by two

i ; . angles,ar and Bg. The slide along the-axis is determined
We introduce the hypothesis that the electron state is ex- gles.ar Pr 9

pressed by a localized base even in a deformed wire. This
localized base reduces to the Wannier basis when the defor-
mation is relaxed. Then, the local motion of an electron from
the ith site to thejth site is determined independently from
the global structure of the wire and the motion is reduced to
a free electron in a relaxed space without deformation. If we
denote the location of thi¢h site in the deformed space &y
and¢; in the relaxed space, the transition matrix satisfies the
relation (x;(t;) | xi(ty)) =(&;(t;) | &(tp)). Here,t; andt; are times

to occupy the initial and final sites. Using continuum ap-
proximation to the sites, the motion of an electron in the FIG. 1. A schematic diagram of the helical shell in a nanowire
potentialU at the relaxed space is governed by a Lagrangiana) and its unfolded diagrartb).

(2)
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by angle ag, which is related to the absolute value of the hio 1 o
Burgers vectob=27Rtanag. The torsion around the-axis pr = _<E ot tan 7’) (10)
is subjected by anglBg, which determines the pitch of the
helix Ly=27R/tanBr. In Fig. 1(b), the length of the chiral 5
vector is denoted by an arrow with a symi@lwhose size is Pp=——, (11)
measured along the circumference of a wire represented by 196
C=27R=d coqBgr—ar)/cosBg with d as a size of the shell
along the crystal latticé. _hd
Using the cylindrical coordinates, the relation between a Pz=75 (12)

displacement of an electron in a helical wirex _ o
=(dr,d#,d2) and that in a relaxed spacg=(dr,dd,d?) is with 7' =yx/R, the quantum Hamiltorinahl of an electron

given by in a helical wire is given by
2 2
d¢=dre, + (cosprd6 + sin Bdz)e,/cosy H=o ;_[(i _ 5tf{5}) N COSa(i ~ ﬁtr{B})
+ (cosadz- sinardf)e,/cosy, (4) miAor o P n
. . o cosa d . d\? d sina g \?

wheree,, ey, ande, are unit vectors in the cylindrical coor- + T% +sin aa_z + COSB&_Z_ Ta_e +U
dinates,a=agr /R, B=Brr /R, y=B-a. The transformation

tensorB is defined by the following equation: + AV, - AV,. (13

dé=(1+B) - dx. (5) Here, we use the Laplace-Beltrami operator in Riemann

_ _ . space at the Hamiltonian and introduce the quantum correc-
Using relation(5) we transform the path df into the path of  tion AV, due to the Weyl ordering, which is defined by
x in Eq. (3). For this transformation we need the Jacobian of

2 2
functional® J=I1,d&(t)/ ax(t), which is given by AV, = - h_[(} ' tan y) _22 2y } (1
8m|\r cog
J= exp[ j r—tr{B}dt} (6) When ag=0 in the limit of smallBg, the HamiltonianH
given by Eq.(13) reduces to that given by Okamotd al®

: ) When there is no torsioBz=0 and up to the first order aig
Then the Lagrangealn in Eq. (3) becomes as follows: is considered, the Hamiltoniadl3) results in

M2 h? p 2
L"z{r ¥ H=-§n[p5+<7"+apz) +p§]+u- (15

+(cosaz - sinar 9)2}] - _ﬁ'ri t{B}-U-Av,. (7)  Ifthe electron state is in an eigenstate alongztasis andp,
can be regarded ascanumber, this Hamiltonian subjects the
motion of an electron in the vector potential

Here,AV is a quantum correlation defined by

%R 2
h? 1 A=-—rpe,. (16)
AVy= -, ®) R' P
This vector potential is equivalent to that of a uniform mag-
which is related to the Weyl ordering of operators in thenetic field and we can expect the Aharonov-Bohm effect on

cylindrical coordinates!? the motion around the circumference of a wire.
A classical HamiltoniarH, of the system is obtained by

the Legendre transformation on E{), whose explicit form
is given by

1 h otr{B} )2 2
HC=—[<p,—_— r }> +<003a%)+sinapz>

o]
g =17° =0

2m o
2
+ (cosﬁpz— sinﬁ%) ] +U+AVy, (9
wherep,, py, andp, are momentums conjugate itpé, andz, kR KR
respectively. . _ (@) (b)
On the other hand, according to the procedure of quanti-
zation by use of the path-integral methd? a quantum FIG. 2. Dispersion relation of the electron energy whegp

Hamiltonian which reduces to the Lagrangi@is obtained =17° g=14° (a), ag=0° 8=14° (b), and ag=17° 8=0° (c). Thin
by the Weyl ordering of the classical Hamiltonig®) with  curves forag=Bg=0° are also depicted for the sake of comparison.
the momentum operators, The meaning of the indexes is discussed in the text.
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If the wave functiony(r, 6,2) is separated intasr,60,z)  value of the index, so that a possible crossing will occur
=x(r)éMk2 with k as a wave number along thexis andn between the dispersion curves. As already discussed, if the
an integer(which is determined by the boundary condition Fermi level is located at this crossing point, the channel

about (9), the energy eigenva|uE is decided by the eigen- number of conduction WI” be aﬁectédEven thOUgh the
value problem of the function(r): value of the reportedy or imbalance is smafl,the exter-

nally applied torsion involves a large imbalance and the elec-
( d )2 ( % )( d ) 2Em tron state will be affected.
—+al xt{-+_tany|| —+alxt —x If the wire is composed of a single shell with radRsthe
dr ro2 dr h wave function becomes a two-dimensional functiord@nd
no 2 o 2 z and given byy(6,2)=€"*2 (n=0,1,2:--). The energy
- (COSQF +sin ak) + (‘ S'”BF + COSak) X eigenvaluekg, of a two-dimensional electron on a shell is
expressed by

+AVy=0. 17 2 5
Eqn= s cog
Here,a=4tr{B}/or and AV=AV;—-AV,. Because of the well shT omR2 Or TR
potential given by Eq(2), the functiony(r) must satisfy the 0 5
boundary conditions: lim,orx’'(R)=0 andx(R)=0. + QR{ kR- — cog g+ ap)sin 7R} } (18)
By means of numerical analysis on a discretized represen- Or

tation of Eq.(17), we obtain the eigenvalue & and sum-  \yith g.=sir? ap+cof B. The electron state on a single he-
marize it in Fig. 2. There are three cases where differenficg| shell is a one-dimensional wave which is quantized by
values ofag and Br are given:(a) ag=17°, Br=14° (b))  an integem and propagates along the wire axis with a wave
ag=0°, Br=14° and(c) ag=17°, Bg=0°. The thin curves are  \ mherk, From Eq.(18), we can recognize that the disper-
for the case ofar=0° andBz=0°, which are given for the jon curve shifts wheag and g is imbalance oryg# 0 and
sake of comparison. In Fig(®, the solid and thin curves are jig ghift depends on the integer This dependence of the
almost aligned with each other and cannot be distinguishegnqex n is similar to that appearing in Fig. 2 for a solidity
This means that when the slide and the torsion are almostjre.
balancedag= S, the energy dispersion is not affected by | this paper we have given a model in which a helical
the helical structure except by the modulation on the reflecsyycture of a nanowire is characterized by two parameters,
tion and transmission rates at wire terminals. the slide anglexg and the torsion anglgs, and the motion
When the parametexg; and Bg vanish, the functiox(r)  f an electron in a helically deformed wire is mapped onto a
reduces taly(zf/R) whereJ, is the Bessel function afth  |ocally free motion in a space without the deformation. A
order andz,, is its zero point, i.e.Jy(z,))=0(p=1,2,3,-:).  global structure of a helical wire is taken into account on a
The index labeled for each curves in Fig. 2 is a pair of thesé{amiltonian with an effective vector potential due to a heli-
numbers(n, p). When there is an imbalance between the val-cal curvature. According to this model, a possible shift and
ues ofag and Br(yr# 0), the dispersion relation shifts along crossing of the energy dispersion curves is discussed, which
the axis of the wave numbdx The shift increases with the depends on the imbalance of the angigsand 8x.
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