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Remote Wigner polaron in a magnetic field
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A remote electron moving a distance away and parallel to a two-dimensional electron $2B{E® in a
perpendicular magnetic field is mapped into a polaron problem. In high magnetic fields the 2DES crystallizes
into a Wigner lattice having two hybrid phonon modes which are neither longitudinal nor transverse. The
remote electron interacts with these hybrid phonons and forms a composite quasiparticle of electron plus
Wigner crystal distortion which is called\Wigner polaron The ground-state energy of the Wigner polaron is
calculated using second-order perturbation theory and the results are related to an experiment on resonant
tunneling.[S0163-182609)00721-3

I. INTRODUCTION spatially separated. An alternative experimental system is a
double barrier tunneling structdrén which an electron tun-

i A. two-drl]mensmnzlil electlronh_sy;]sf[emlﬁEdS C\i/r_] crystal- Inels in or out of a 2DES. When the 2DES is not in the crystal
Ize into a hexagonal crystal which Is called a Wigner crystaly,1qe the electron will interact with the plasmon modes of

(WC). At zero temperature this solid phe;se appearsen  ihe SDES which results into the plasmon polaron which we
the electron density is less than=4/7agl'?, whereag  giscussed in Ref. 10.
(=h%e/mé) is the effective Bohr radius anbi(=137) is A Wigner crystal has longitudinal and transverse phonon
the plasma parameter. For a 2DES realized in a GaAs hemodes!*2 When a perpendicular magnetic field is applied,
erojunction this valuen, is about 6.X10" cm 2. For a these two modes are coupled and new hybrid modes
2DES in the classical regime, i.&€x<kgT, this solid phase appear?'3The Wigner polaron will be produced now by the
has been observed for electrons floating on liquid hefidm. polarization of these modes. In the present paper we will
On the other hand, if a magnetic field is applied perpendicudiagonalize the resulting phonon Hamiltonian and obtain the
lar to the system, the critical density increases due to théanonical coordinates using the Laplace transformation tech-
quenching of the kinetic energy of the electron. Andreal®  nique. After the evaluation of the polaron energy, including
found experimentally that the 2DES crystallizes when theboth static and dynamical mass-renormalization effects, we
filling factor is less than a critical value,=0.23 at very low identify the obtained energy shifts with those observed in
temperature. This condition can be transformed into a criticafecent tunneling experiments.
electron densityn.= v.B/ ¢, whereB is the magnetic field The present paper is organized as follows. In Sec. Il we
and ¢, is the flux quantum. For a typical magnetic field of discuss the mass modulation of a remote electron in the static
B=20 T this critical density is 1.X10'" cm 2. Conse- periodic potential of a WC. In Sec. Il the hybrid phonon
quently, the WC can exist in a large range of electron denmodes induced by a magnetic-field are obtained and ana-
sities even in GaAs heterojunctions where the electron has i¥zed. In Sec. IV the distortion of the WC due to a remote
small effective mass and where usually the electron gas, iglectron is discussed in terms of a Wigner polaron. Polaron
the absence of a magnetic field, behaves as a quantum gaiduced energy shifts are compared with the shift in the po-
A bilayer electron systenBLES) is realized in a high sition of the tunnel current in a resonant tunneling device,
quality double-quantum weéllor in a wide single-quantum and their magnetic-field dependence is analyzed. Finally, our
well.® The distance between the two 2DES introduces a newonclusions are given in Sec. V.
degree of freedom through which the electron-electron inter-
action can be modified. For example, the quantum Hall effect !l ELECTRON BAND STRUCTURE INDUCED BY THE
is modified by the interlayer interactidfand different WC PERIODIC POTENTIAL OF A WIGNER CRYSTAL

phases are predictédn the present paper we investigate the In this section we consider tistaticWC and compute the

interaction of a single remote electron with @ WC in the i, ,ence of such a periodic potential on the energy spectrum

\?vr(aeigprgﬁlstzgrlhee)/(\;iegrgg g:)zligrrl)entilr? ;I?'j!ﬁiglsn iﬁ t%f\ggggn?;zp%f a remote electron. The potential energy of a remote elec-
D ) tron a distance separated from a WC lying in t lane
of a magnetic field.The electron distorts the WC locally and P ying in they p

. L . S is given by
the composite quasipatrticle: electran distortion is called
the Wigner polaron. The resulting electron-phonon interac- e2
tion in a BLES has the remarkable feature that its strength gc(r,z):E T 2 e(K)exp —iK-r),
can be modified by changing the distance between the re- noeJ(r—Rpy“+z° K(z0)
mote electron and the 2DES, giving rise to a continuous @)

localization of the polaron for small bilayer separatis-  wherer is the 2D electron position, the lattice electrons are
other difference with the traditional polaron problems is thatsituated at the hexagonal sit@s with n the 2D lattice index,
the lattice distortion(or polarization and the electron are and the 2D Fourier transform of the periodic WC potential is
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0.4 where the dominant first six reciprocal-lattice vectors are
o taken into account in Eq4) and K,;=4/(\/3a) and ag
E 0.3 =fhe/mé. Notice that increasing the remote electron sepa-
2 ration z from the 2DES suppresses exponentially the static
w
0.2 mass enhancement, as one would expect intuitively.
0.1 Ill. WIGNER CRYSTAL PHONONS
0.0 IN A MAGNETIC FIELD
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1 We denote the electron positian, in the WC by r,

FIG. 1. The electron band structure caused by the periodic po= Rn*t Un, WhereR, are the hexagonal lattice vectors, and
tential of the static WC. The remote electron is locatedzat Un IS the displacement of the lattice electron. The Hamil-
=1 nm, the electron density of the 2DESris=10"* cm ™2, the  tonian Hyy describing the lattice vibrations is now repre-
unit of energy isE,=7%2K2/m=51.6 meV, and the unit of wave- Sented in terms of the canonical conjugate momentand
length isK,=4m/\3a=2.14x10° cm !, with a the WC lattice  Pn. If we assume that the total angular momentum of the
constant. electrons vanishes, and introduce the Fourier transforms of

u, andp, given by

A. Hamiltonian of a Wigner phonon in a magnetic field

_ 2mng exp( —zK)

e(K)= — ) 1
Q) K - el
up JN; u(k)exp(ik-Ry), (6a)
whereng is the electron densitye the static dielectric con-
stant of the medium the electrons are moving in, éhthe 1
2D surface area. In this periodic potential the remote electron Pr=— 2, p(k)expik-R,), (6b)
will be in a Bloch state and the wave function is given by VN %

where N is the total number of electrons, we obtain the
H(r)=> > F(K)exdi(K+k)-r], (3  Hamiltonian ink space®
kK K

1 1
with K the 2D reciprocal-lattice vector. Then the Schro  Hpn=_> om T(K) - w(=k)+ Su(k) - C(k)-u(=k) .
dinger equation for the remote electron in wave-vector space . @)
is given by
The first term is the kinetic energy of the electrons under a
2 ) , ) uniform magnetic fieldB applied perpendicular to the WC
[ﬁ(k’LK) _Ek}F(KH'Z ¢(K=K")F(K")=0, plane(i.e., xy plane and the momentura(k) in the sym-
K (4) metric gauge is defined by

whereE, is the eigenvalue for the wave numbewithin the K= oK) — Moc
first Brillouin zonel* We have included the first six domi- a()=pk) ==
nant reciprocal-lattice vecto#§ and diagonalized the above
equation. The resulting sub-band structure, in energy units o¥ith oc=eB/mc the cyclotron frequencym the electron
Eo=%2K2/m, is shown in Fig. 1 as function of the wave Mass in the host materiat; e the electron chargec the
vector which is in units oK, =4/(\3a), wherea is the ~ Velocity of light, ando™ the 2D tensor
lattice constant of the WC. The definition of the high-
symmetry points J, X, antl in the Brillouin zone are given 3:( 0 1)
in Ref. 12. We use the material constants for Gas: -1 0/
=12.53 andm=0.06/M, with my the electron mass in ] ] ] )
vacuum and considered an electron densigy 10t* cm~2. The_z second term in Eq7) is the d!stornon energy of _the WC
This results ina=34.0 nm and gives the units;=2.13 lattice calculated in the harmonic appro>i|mat|on, i.e.,, up to
X10° cm 2 and E;=51.6 meV. Notice that near thE second order in the displacementso thatC(k) is the elas-
point, the electron energy spectrum is parabolic. The peritic tensor defined by
odic WC potential induces gaps in the spectrum which in-
crease with decreasirg < < .

Expanding the electron energy around fhepoint, and C(k)=§ ®(Rp){1—explik-Ry)}. (10
considering the parabolic dispersion Bs=#2k?/2m*, al-
lows us to define the effective mass of the remote electronHere,

a-u(—k), (8

€)
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0.70 y y y v which are valid up to second order k= |k|. These frequen-
cies are plotted in Fig. 2.
0.66 When a magnetic field is present, the eigenvalues were
already obtained in Refs. 12 and 13. We present an alterna-
0.12} tive derivation of the eigenvalues and eigenvectors by using
g the fact that the diagonalization is equivalent to solving the
I o.08} equations of motion. Details of the calculation are given in
the appendix and we limit ourselves here to the results.
0.04} In the presence of a magnetic field the longitudinal and
transverse coordinate® (k) (a=I,t) perform cyclotron
o5 motion which can be separated into two new coordinates

KK, Qa<k>=j=212 Qju(k), (16)

FIG. 2. The frequencies of the WC phonorg:andw; are the  \yhere the momentum coordinatb) will now also be de-
longitudinal and transverse modes, respectively, in the absence Of[?endent on these new coordinat

magnetic field, andv; and w, are the hybrid modes under a mag @ee the appendix The
y 1 a)z - . . . P
netic field of B=20 T. The unit of frequency i®,=E,/#=7.86 new coordinate> ,Q;4(k)€,(k), denoted by the inde is

3 .1 an admixture of longitudinal and transverse motion and in
X108 s71, o 9 ) . )
fact exhibits an elliptic motion with eigenfrequenay; (]
~ 1 2 P o2 =1,2) which is given by
=— +
P(R)as=3 XWX IXgdX,) €R]’ @

1
a)j2=§[(w|2+ wtz-l- wg) + \/(w|2+ wtz-i— w§)2—4w|2wt2],
is the force tensor, wher®|= X2+ Xy2 and the subscripts (17)

a and B indicate thex or y component. The quantization is

. : . : here thex sign is chosen such that; <w,. The new four
E((elgo;rggﬂ(tg_lntrodu0|ng the commutation relations bEtweeﬁ(l:voordinatesta(k) (i=1.2:a=1t) satisfy the following

commutation relations:

[P(K) o U(K") g]= =17 8064k - (12 [Q;a(k),Qjra(k")]=0, (189
N — i j 2
B. Diagonalization of the Hamiltonian [Qji(K),Qjre(k")]=—i(—1)12d°(K) §jj Sigcr » (18D)
In the absence of a magnetic field the diagonalization obvith
the Hamiltonian(7) is discussed by several authors and re- 5
sults into longitudinal and transverse phonon mode$Ac- d%(k)= @e ] (19)
cording to the most comprehensive study by Bonsall and 2m{w3(k) — wi(k)}

Maradudint? the Hamiltonian is diagonalized with the trans-

verse and longitudinal conjugate coordina@gk), P,(k) Because two of these fo; (k) are independent, we can

andQ,(k), P,(k), which are defined by define new annihilation and creation operatafg and aka
such that
uk)= > Q,(k)e, k), (133 Qji(k) =d(k) (k) (@ +af_y), (208
a=It .
Qju(k)=—i(=1)ld(k) (k) "*(aj_—af), (200
pk)= 3 Pu(k)e,(k), (13p Where
a=|,t
| | (k) — wf(k)[] ¥2
with o= i 2
ik/k (a=) Then, the commutation relatiori8g and(18b) become
e (k=1 .o 14 .
( ) —io-kl/k (a=t), ( ) [ajk,a;r,k,]=5“-r5kk/, (J,]’Il,Z). (22)

wherel andt represent the longitudinal and transverse modeWith these creation and annihilation operators the Hamil-
respectively. The eigenvaluedw,(k) (a=I,t), or the tonian(7) is now diagonalized and takes the form
eigenfrequencies, are given by

|

2 2

th=§k‘, j;zﬁwj(k)

2me

Ns
w (k)%= (k—0.181483k?), (15a

em In Fig. 2, the k dependence ofw; is shown for ng

) =10" cm 2 at B=20 T. In the zero magnetic field limit
, 2meng 2 the frequencyw,(k) converges to the longitudinal frequency

w(k)2= 0.036 296 BK?, (15b) 2

em w;(k) which couples strongly with the remote electron.
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However, in large magnetic fields this phonon has a large
energy and is therefore difficult to excite. The remote elec-

15
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| B=20T

tron will mainly couple to the low-energy excitatian, (k),
which converges ta,(k). In fact, in the absence of a mag-
netic field this frequency mode does not interact with the
remote electron.

IV. REMOTE WIGNER POLARON

A. Electron-phonon interaction

We consider the deformation of the lattice due to the pres- 0 5
ence of a remote electron a distarcaway from the WC.
Such an electron locally polarizes the WC which can be
viewed as the excitation of virtual phonons of the WC. Tak-
ing into account the Coulomb potential between the remote 4 v v v
electron at (,z) and the lattice electrons &,, we obtain
the interaction energy as

H _e_22 1 - 1
e §\VIr=R,—u(R)P+Z VIr-R)Z+Z|
(24

Next, we consider only small deviations from the equilib-
rium lattice positions and linearizé; in the variableu(R,)

10

which, with use of Eq(6a) and the 2D9 function relation:> 0 5 15 20
results in the expression z[nm]
B —i2mwe?ng Z z k+K FIG. 3. Thez dependence oE: the polaron energy correction
Hin= N m u(k)- 2 |k+K]| caused by the interaction of the remote electron with the WC

phonons and the magnetic field f&=0 and 20 T(a), and the
energy shiftA caused by the magnetic fie{)). The electron den-
sity is taken to ben,=10'" cm 2.

If we consider the long-wavelength limit, and ignore Um-

klapp processes by dropping the sum over the reciprocaldsing second-order perturbation theory, we obtain the
lattice vectorsK and keeping only th& =0 term, the elec- ground-state energl of the coupled system Hs

tron will only interact with the longitudinal phonons. Using
the relations(133, (16), (203, and (20b), we obtain the
second-quantized expression of the Hamiltonian as

xexg —zlk+K|+i(k+K)-r]. (25

1
E=hiof+ oE, (29)
where o} is the cyclotron frequency defined bw}
=eB/m*c and SE is the energy correctidh caused by the

WC phonons,

jk

\%
Hint= ; j:EI,Z )

where Q(=N/ng is the system area and the coupling

exp(ik-r)(aj+al_y), (26)

1 IViil?

*
strengthV;, is k andz dependent and given b N N — 2 il
ginviy p g y SOE Q4 Hahe K)o dTeXp{ 7+k DB< o, (K ”,
el (30
. L )
B. Polaron in a magnetic field Dg(é)= ———[1—exp—&)]. (31
2m* w}

The full HamiltonianH for the Wigner polaron interacting
with the Wigner crystal phonons in a magnetic field is thenHere, we have shifted the energyby the zero-point energy
given by of the phonons.

In Fig. 3(a), thez dependence of the remote electron en-
ergy E is shown forB=0 and 20 T by the solid curves when
ng=10" cm 2. An electron out of the WC plane feels an
attractive force(in addition to the electrostatic repulsive
Here,m* is the effective mass of the remote electron in theforce due to the static Wtaused by the polarization due to
static WC defined by Eq5), A(r)=BXr/2 is the symmetric the electron-WC interaction. To move an electron from the
gauge vector potentiakl ,, is the WC phonon Hamiltonian WC plane atz=0 to the remote positior, the following
(7) andH;, is the interaction Hamiltonian given by E@4).  correlation energyW(z,B)=E(z,B)—E(0,B) is needed,

2

e
H p+ EA(r) +Hpnt Hint- (28

:W(
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' Y T strongly correlated and near the WC phase. Although it is
experiment clear that in a strict sense the WC is not formed at low
®eee0’ 2 magnetic fields, this description takes into account that the
electrons in the 2DES are strongly correlated and form lo-
cally an imperfect crystallike configuration. The experimen-
tal data of Ref. 9 exhibit an oscillatory behavior wiB)
which is not apparent in Fig. 4. This oscillation is related to
the occupation of Landau levels which influences the
electron-electron screening and in turn the remote
0 oo electron-WC correlation and was explained in Ref. 10. The
4 . latter plasmon-type of approach is more applicable in the low
0 5 10 15 20 magnetic-field region, i.eB<10 T. It underestimated the
B [T] electron-electron correlation in the 2DES in the high
magnetic-field region.

A [meV]

FIG. 4. The energy shifs and its componentd, and Ay as
function of the magnetic field. The dots are the experimental results

of Lok et al. We tookng=10"" cm™2 andz=15 nm. V. CONCLUSIONS

The 2DES in the presence of a strong perpendicular mag-

which increases with increasing field stren@hThis is due  netic field forms a WC. A remote electron a distance away
to the fact that the phonon frequeney decreases witlB. from the 2DES will be repelled due to the static lattice, but it
This correlation energy is very likely related to the CoulombWill feel an attractive contribution due to the polarization of
(quas) gaps seen in a resonant experiment when a singl’®¢ WC. We formulated the remote electron problem as a
electron tunnels into the W(Ref. 18 or biased emittet®®  Wigner polaron problem in a magnetic field and used
When a tunneling electron moves from the WC plane at second-order perturbation theory to calculate this attractive
=0 to the quantum well located at z, the electron loses apotential. We also took into account the mass enhancement
energyW(z,B), which has to be supplied to the system, andcaused by the periodi_c p_otential of the static WC: In the
this is equivalent to having to apply a higher bias field. Con-20Sence of a magnetic field the WC has longitudinal and
sequently, this results in a shift of the tunneling resonanc&@nsverse phonons and the remote electron interacts pre-
position. Recently, a shifA in the position of the resonant dom'”af‘“y_ with the longiiudinal mode. In the presence of a
peak at high magnetic fields was obserdewithin our magnetic field, on the other hand, these two modes are hy-
model this shift is given by\(z,B) =W(z,B) —W(z,0). In bridized and result in two new modes. We obtained the co-
Fig. 3b) the energy shifs is shown as a function o for ordina@es pf these hybrid phonons by solving the equations
B=20 'T. This energy shift is composed of a phonon partOf ?P?(;I%r:t:gg:\?eHeoltseer:lib;rgeg\ll(\;teuerr? .the remote electron and
Ap=Wy(z,B) ~W,(0B) and a kinetic part=Wy(z,B) —  \y"c relatedeco an energy shift obtained experimentally
—W,(0,B), which are shown by the dashed curves. : i i ; t Th hift at hiah
Since in the experiment of Ref. 9 there is some ambiguit N a resonant tunneting expenment. 'Ne energy shift at hig

about the values ofi, andz, one cannot carry out a strict magnetic fields is explained by the difference of the attrac-

comparison with our calculations. However, the experimen-t've potential at zero and nonzero magnetic field. The agree-

e 1Ll ) ment between the measured and the theoretical energy
?iyng.?erv\\//ﬁ?cs Tlsﬁcljmapb;r:tbé ﬂes\i/zgmti) Olgrl(z g;] Inaz; shifts'® is improved by the inclusion of the hybrid phonon

previous paper, we calculated the energy shifunder the modes due to the magnetic field and the mass enhancement

assumption that the remote electron couples with the plasqaused by the periodic potential of the WC. Agreement with

mon excitations of the 2D electron gHsThis explained the experiment is found in the high magnetic-field regime, i'e'Z
i A . B>10 T, where the present model is expected to be appli-

experimentally observed oscillations i with B, but there able

was still a factor of 4 difference between the measured and '

calculated values. In this paper, this difference is improved

in the high magnetic field regime. This is due to the inclusion ACKNOWLEDGMENTS
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ues for the electron densityn{=10"* cm2) and the dis-
tance between the remote electron and the 2DES (
=15 nm we found quantitative agreemei magnitude
and in the functional behavior & with B) with the experi-
mental results of Lolket al® in the high magnetic-field re- In this appendix, the Hamiltoniatv) is diagonalized by
gion, i.e.,, B>10 T where the 2DES is expected to be solving the equations of motion in the Heisenberg picture.

APPENDIX: DIAGONALIZATION
OF THE WIGNER-PHONON HAMILTONIAN
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As explained in Sec. lll, we introduce new coordinates -

Q(K)=(Q,(k),Q(k)) and P(k)=(P,(k),P,(k)) defined by Q(t)=_212[Regziij(S)exr(—st)

Egs. (133 _and(13b). Then, the commutation relatiori&?2) =

transform into + Regz_iwj@(s)exq—st)], (A7)

[P(K) o, Q(K")gl= 118,50k (a,B=I1) (Al)  where Res denotes the residue. The resulting expression is
and the equations of motion in the Heisenberg picture be-

come Q(t)=j;12 0,(1)-Q;, (A8)

d 1 where
aQ(t): EP(t), (A2a)

— _1)j 6/ .
d : e L R
D)=~ oo TI(1) +C"-Q(1), (A2b) j o)

d andfij(t) is a tensor which elliptically rotates the coordinate

wheret is the time and th& dependence is not indicate Q, and is defined by

explicitly. The momentunI(t) and associate@’ tensor are
defined by

. . o
;(t)=coswjt+o- (——w-2>sinwjt. (A10)

T1(t) = P(t) - w25 Q(t), (A3) jog\m
With the same treatment fdi(t), we obtain
- mw|2 0
=l o me?) (A4) nw=3 40, (ALY)
Because the differential Eq§A2a) and (A2b) are linear, a \ypere
Laplace transformation reduces them to algebraic equations. -
We denoted(s) as the Laplace transform f(t). Applying H:EE- (C_’_w_z) Ne) (A12)
the formula df/dt(s)=sf(s)—f(0) to Egs. (A2a) and Vet Amo Tl
(A2b), we obtain With the new coordinates the Hamiltoni&f) becomes
- 1 [+of —sog s I oo (K2 Qy(K)Qy(—k)
Q(S):D_ 2, 21| _ Qt —1, Ho= 2 2 - Jz : 2 - 2
()| sw, '+ o we S ”2 : K iz d(k)? | |e(k)?=wi(k)?
A5

whereQ=Q(0), =T1(0), and N M] _ (A13)
|y (k)?— wj(k)?|
The commutation relationd 88 and(18b) are derived from
The zero points oD(s) are denoted bg=*iw; (j=1,2), the definition(A9) and the factonu;(k) in Egs. (2039 and
where w; is the eigenfrequency of the new modes given by(20b) originates from the term 0Q;,(k)Q;.(—k) in Eg.
Eq. (17). (A13). The Hamiltonian(23) is derived easily from Egs.
The inverse Laplace transform now leads to (203, (20b), and(A13).

D(s)= (524 w?)(s*+ wd) + Sw?. (AB)
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