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Abstract. – The property of the remote electron a certain distance away from a Wigner
crystallized two-dimensional electron system (2DES) is investigated. The electron mass of the
remote electron is: 1) modified by the periodic potential of the Wigner crystal (WC), and
2) renormalized due to the WC phonons, i.e. the polaron effect. The latter is obtained using
the Feynman path integral method which also provides us with the correlation energy. In this
novel polaron problem the electron-phonon interaction can be controlled by the distance between
the two 2DES.

A two-dimensional electron system (2DES) under appropriate conditions can crystallize into
a hexagonal Wigner crystal [1]. Such a Wigner crystal (WC) is realized in the classical system
of electrons above the surface of liquid helium [2] and in the quantum 2DES in heterojunctions
in the presence of a large magnetic field [3]. Recently, the bilayer electron system (BLES)
composed of two interacting 2DES separated a certain distance from each other has been
investigated experimentally and theoretically. The BLES is realized in a high-quality double
quantum well [4] or in a single wide quantum well [5]. The distance between the two 2DES
introduces a new degree of freedom through which the electron-electron interaction can be
modified. For example, the quantum Hall effect is modified by the inter-layer interaction [4], [5]
and different WC phases are predicted such as square or rhombic lattices which are not stable
in single layer systems [6].

In previous studies on BLES, the densities of the two 2DES are assumed to be equal. Here,
we investigate a novel case where the BLES is composed of a very dilute 2DES and in which
the other 2DES is crystallized into a WC. An alternative system would be a double-barrier
system as used in resonant-tunneling experiments in which the quantum well contains a WC
and there is a single electron propagating outside one of the barriers. In fig. 1 (a) a schematic
diagram of the electron density profile of the system is shown. We assume that the potential
barrier between the WC and the remote electron is sufficiently wide such that tunneling and
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Fig. 1. – (a) Schematic diagram of the electron density profile of the WC and the remote electron.
(b) Contour plot of the periodic potential due to the crystallized 2DES as felt by the remote electron.
The Bravais cell of the hexagonal lattice is enclosed by the thick dashed lines.

exchange between them can be neglected. In the dilute 2DES, the electron density is assumed
to be so small that the intra-layer electron-electron interaction is negligible and a one-particle
picture is appropriate. The remote electron feels the periodic potential of the crystallized
2DES leading to a new electron band structure which, e.g., results into an effective mass,
which is heavier than the bare-electron mass in the host material. Moreover, this electron
distorts the WC locally and the composite quasi-particle: electron + WC distortion is called a
Wigner polaron. This WC distortion is described in terms of virtual phonons of the WC. The
resulting electron-phonon interaction in BLES has the remarkable feature that its strength
can be modified by changing the distance of the two 2DES.

In fig. 1 (b) we show the contour plot of the periodic potential due to the crystallized 2DES
as felt by the remote electron. The Bravais cell of the hexagonal lattice is enclosed by the
dashed line, the vectors a and b are the basis of the lattice. In order to minimize the Coulomb
repulsion, the remote electron will be situated at the two triangle centers in the Bravais cell,
which are located at s = (a + b)/3 and 2s.

The remote electron will be in a Bloch state and has a sub-band structure due to the presence
of the periodic potential of the crystallized 2DES. To obtain the effective electron mass as a
function of the layer distance, we employ the variational method and use a Gaussian-type
Wannier basis [7]. The electron Bloch state ψk is taken as follows:

ψk(r) =
∑
n

∑
j=1,2

e−ik·(Rn+js)w(r−Rn − js) , (1)

where
w(r) =

1
√

2µ
e−r2/2µ2

. (2)

Here, µ is a parameter which measures the extent of the remote electron in the plane, k is a
2D wave vector in the first Brillouin zone, r is the 2D electron position coordinate in the dilute
2DES, Rn is the 2D hexagonal lattice vector which is given by nxa + nyb, with n = (nx, ny)
integers, and w(r) is the Gaussian-type Wannier basis. In the Bravais cell of the hexagonal
lattice there are two points, i.e. at s and 2s, where the WC potential is minimum. In the
vicinity of these points, the potential is nearly quadratic and therefore the Wannier state is
well described by the Gaussian function as in (2). The variational parameter µ is determined
by minimizing the energy

EWC(k) =

〈
ψk

∣∣∣∣{ p2

2m
+ U

}∣∣∣∣ψk

〉 /
〈ψk | ψk〉 , (3)

where m is the electron mass in the host material, p is the momentum of the 2D electron and
U(r) is the periodic potential of the crystallized 2DES,
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Fig. 2. – The z-dependence of the effective mass m∗ in the static periodic potential of the WC for
ns = 107 cm−2 which implies a = 3.40 mm. Here, m is the bare-electron mass in the host material,
and a is the lattice constant of the WC.

U(r) =
e2

ε

∑
n

1√
(r−Rn)2 + z2

, (4)

where −e is the electron charge, ε the dielectric constant of the host material, and z the
distance between the WC and the remote electron. The extent of the 2DES in the z-direction
is taken to be zero for convenience. Calculating the integral (3) in wave-number space, we
obtain the following expression:

EWC =
1

2

{
k2 + C−1

k

∑
K6=0

(k2 + k ·K)e−µ
2(k+K)2

cos2

(
1

2
K · s

)}
+

+C−1
k

2πns

aB

∑
K6=0

e−Kz

K
Dk(K) , (5)

where K is a 2D reciprocal lattice vector of the hexagonal WC, aB = h̄ε/me2 is the effective
Bohr radius, ns is the 2D electron density,

Ck =
∑
K6=0

e−µ
2(k+K)2

cos2

(
1

2
K · s

)
, (6a)

and

Dk(G) =
∑
K

exp

[
−

1

2
µ2{(k+K+G)2+(k+K)2}

]
cos

[
1

2
(G+K)·s

]
cos

(
1

2
K · s

)
. (6b)

Here we use unit such that h̄ = m = K1 = 1 (K1 = 4π/
√

3a is our unit for the reciprocal
lattice vector where a is the lattice constant of the WC).

Expression (5) has the parabolic form k2/2m∗ for small k, where m∗ is the effective mass
of the Bloch state. In fig. 2 we show the z-dependence of the effective mass m∗ of the remote
electron when it moves in the potential of the static WC. We took the material constants of
GaAs: ε = 12.53 and m = 0.067m0 and considered the electron density ns = 107 cm−2 which
results into a = 3.40× 103 nm. When the distance z between the two 2DES becomes smaller
than the lattice constant a, the effective mass increases rapidly due to the strong potential of
the crystallized 2DES.

In a second stage we include the deformation of the lattice due to the presence of the remote
electron which is a distance z away. Such an electron will locally polarize the WC which can
be viewed as the excitation of virtual phonons of the WC. In the above analysis we assumed
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the WC crystal to be frozen and the electrons were located in fixed lattice positions. The
deformation interaction energy of such a remote electron with the WC is given by

Hint =
e2

ε

∑
n

{
1√

(r−Rn − u(Rn))2 + z2
−

1√
(r−Rn)2 + z2

}
. (7)

Here, r is the 2D position of the remote electron, and u(Rn) is the displacement of the WC
electron bound at the hexagonal lattice side Rn. If we linearize eq. (7) in u(Rn) and take the
long wavelength limit, the electron interacts with longitudinal WC phonons. The interaction
energy can now be written as follows:

Hint =
∑
k

Vk√
Ω
e−ik·r(ak + a†−k) . (8)

Here, Ω is the system area, ak and a†k are the annihilation and creation operator of the
longitudinal WC phonon with wave vector k and frequency ωk. The interaction strength Vk

is given by

Vk =
2π

aB

√
ns

2ωk
e−kz , (9)

in units h̄ = m = K1 = 1, where ωk is the dispersion relation of the longitudinal WC phonon
which is given by L. Bonsall and A. A. Maradudin [8],

ωk =

{
2πns

aB
(k − 1.3167k2)

}1/2

. (10)

Thus the Hamiltonian H for the Wigner polaron interacting with the longitudinal WC phonons
becomes

H =
p2

2m∗
+
∑
k

ωk

(
a†kak +

1

2

)
+Hint . (11)

The first term is the kinetic energy of a single electron with 2D momentum p and the effective
mass m∗ whose z-dependence is shown in fig. 2. The second term is the Hamiltonian of the
longitudinal WC phonon. Equation (11) is a standard polaron Hamiltonian which we solve
using the path integral representation of the partition function and introducing the Feynman
trial action [9]. We obtain the following expression for the Wigner polaron energy at zero
temperature:

E =
(v − w)2

2v
−

∫ ∞
0

dτ
1

2π

∫ kc

0

dk k | Vk |
2 exp

[
−k2

m∗
f(τ) − ωk | τ |

]
, (12)

where kc is the cutoff parameter determined by the first Brillouin zone boundary, which equals
1/2 in our units, and

F (τ) =
w2

2v2
| τ | +

v2 − w2

2v3
(1− e−|τ |v) , (13)

where v and w are the variational parameters of the Feynman trial action [9].
In fig. 3 (a), we show the z-dependence of the polaron energy −E in units of E0 = h̄2K2

1/m
(E0 = 5.19 meV for GaAs with ns = 107 cm−2). This energy is equivalent to the Coulombic
correlation energy between the remote electron and the electrons in the WC. When the distance
z decreases, the energy −E increases because the electron interacts more strongly with the
WC phonon resulting in a large distortion of the WC lattice. For reference we show the energy
when m∗/m = 1 (dashed curve), i.e. no band effects due to the static WC. The polaron model
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Fig. 3 Fig. 4

Fig. 3. – The z-dependence of (a) the polaron energy −E, (b) the polaron mass mp, and (c) the
polaron radius rp. The energy is in units of E0 = h̄2K2

1/m = 5.19 meV for ns = 107 cm−2 and
a = 3.40 mm is the lattice constant of the hexagonal WC.

Fig. 4. – The same results as in fig. 3 but now for a higher-density sample of ns = 1011 cm−2 which
gives for the energy unit E0 = 51.9 meV and a = 34.0 nm.

mass mp is defined by m∗v2/w2 and this value is related to the mass enhancement induced by
the electron-phonon interaction. In fig. 3 (b), the polaron mass mp scaled by the bare mass m
is plotted as a solid curve. The dashed curve is the result when we assumed m∗/m = 1. Notice
that there is a substantial mass renormalization when the electron is close to the WC. This
mass enhancement increases when we include band effects due to the static WC. The polaron
radius rp defined by {v/m∗(v2−w2)}1/2 is plotted in fig. 3 (c) by the solid curve and the dashed
curve is the result when m∗/m = 1. As the distance z becomes small and the electron interacts
with the phonon much stronger, the polaron radius shrinks continuously. This is in contrast to
the acoustic polaron systems in which a discontinuous shrinkage is possible, depending on the
value of the cutoff parameter, due to a transition from the free to the self-trapped state [10].

Similar results for a higher-density system, i.e. ns = 1011 cm−2 are shown in fig. 4. Now
E0 = 51.9 meV and a = 34.0 nm. In this case the effective mass m∗ can be calculated from the
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formula m∗ = 1 + 24(2πns/aB)2 exp[−2z] which is obtained by a k · p perturbation method.
The mass renomalization is now substantially smaller than in the low-density case, i.e. a factor
3.5. The energy shift is in relative units much smaller but in absolute values it is a factor of
100 larger for small z, namely −E ≈ 10 meV for ns = 1011 cm−2 and −E ≈ 0.1 meV for
ns = 107 cm−2.

The electron mass is a basic quantity in transport phenomena and in cyclotron resonance.
The predicted mass and energy enhancement should be observable experimentally. The
deformation energy is related to the Coulomb (quasi-)gaps seen in a tunneling experiment
of a single electron into a Wigner crystallized 2DES [11], [12]. Recently, an energy shift in the
position of the tunneling peak was observed in ref. [12] when a large perpendicular magnetic
field was applied. In such a case the 2DES is strongly correlated, although not yet in the
Wigner crystal phase. An experimental shift in the tunneling peak position of about 2 meV
for ns = (0.7–3)× 1011 cm−2 is comparable in size with our theoretical result for the polaron
energy of −E = 0.04 E0 = 2.1 meV for z/a = 0.4 and ns = 1011 cm−2. We took z = 0.4a =
13.6 nm ≈ (11 + 5.8/2) nm as the distance between the 2DES and the tunneling electron,
i.e. the tunneling barrier in the experiment of ref. [12], had a width of 11 nm and the width
of the quantum well the remote electron was residing in was 5.8 nm.
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