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Abstract. – The Coulomb correlation of a remote electron separated from a two-dimensional
electron system (2DES) is studied in the presence of a magnetic field applied perpendicular to
the 2DES. The polarization produced by the remote electron is described as the excitation of
virtual plasmons in the 2DES. The resulting composite quasi-particle, electron + polarization, is
therefore called a plasmon polaron. The ground state energy of this quasi-particle is calculated
using second-order perturbation theory and the results are related to recent resonant tunneling
experiments. Qualitative agreement of the shift in the resonant tunneling peak with magnetic
field is obtained.

The electronic Coulomb interaction in a doped semiconductor system leads to exchange and
correlation contributions to the electron energy similar to those in metals [1, 2]. It has been
recently shown that resonant tunneling can reveal this Coulomb interaction as a shift in the
bias position of the tunneling peak. A quantum resonance device was used, consisting of a
double barrier and quantum well containing a single two-dimensional electron gas (2DEG) as
injector into an “empty” quantum well region [3]. The dependence of the peak position on
magnetic field and temperature were studied. A tunneling electron can be regarded in such
experiments as a remote electron which is separated from the two-dimensional electron system
(2DES) and interacts via the Coulomb interaction with the 2DES left behind. This interaction
energy is related to the Coulomb (quasi-) gap obtained in the resonant tunneling experiment
of a single electron into a 2DES, and between interacting adjacent 2DESs [3-5]. This general
problem has attracted significant theoretical interest, and is well described in high or low field
ranges by fully quantum-mechanical or semiclassical descriptions, as appropriate [6-8]. Here
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we present an alternative theoretical approach which covers the entire magnetic-field range,
and provides an intuitive explanation of the observed tunneling peak voltage shifts in the
experiments of Lok et al. [3].

In a previous study, we formulated the problem of a remote electron interacting with the
2DES as a polaron problem, where the 2DES was assumed to be in the (low-density) Wigner
crystal state. The electron polarizes the 2DES, and in that density regime this is treated as
the excitation of phonons in the 2DES within a discrete phonon model [9]. In that formulation
we neglected magnetic fields and the corresponding Landau levels. Using a previous treatment
of the electronic state in a metal [2] and the dielectric function of a 2DES [10,11], we extend
here our polaron model to arbitrary magnetic fields and to the 2DES liquid state.

When a Landau level is fully filled, electrons in that level cannot respond to an external
perturbation. Thus, only electrons in partially filled Landau levels are responsible for any local
polarization by an external potential. The dielectric function exhibits oscillations reflecting the
occupation of Landau levels and the plasmon frequency is modified by this dielectric function.
As a consequence, the strength of the Coulomb interaction between the remote electron and
the 2DES will be an oscillating function of the magnetic field. This interaction is calculated
here within second-order perturbation theory.

A remote electron placed a distance d away from the 2DES, which lies on the xy-plane,
induces a modulation of the election density n(~r ) of the 2DES. If we denote the position of
the j-th electron in the 2DES by ~rj = (xj , yj), the electron density is expressed as

n(~r ) =
N∑
j=1

δ(~r − ~rj) =
1

Ω

∑
~k

n~k exp[i~k · ~r ] , (1)

with ~r = (x, y) being the 2D position, N the total number of electrons, Ω the system area, and

n~k the Fourier coefficient with 2D wave number ~k. We will describe the density fluctuation
in terms of collective excitations of the system (magnetoplasmons). When these excitations
are formulated quantum-mechanically, the coefficient n~k is expressed via annihilation and

creation operators for each magnetoplasmon a~k and a†~k
as follows: n~k = λ~k(a~k + a†

−~k
), where

the coefficient λ~k is to be determined later [2]. Then, the Hamiltonian of the remote electron
in a magnetic field interacting with these collective excitations becomes

H =
1

2m

(
~p+

e

c
~A(~r )

)2

+
∑
~k

h̄ω~ka
†
~k
a~k +Hint . (2)

Here, the first term refers to the remote electron, and the vector potential ~A(~r ) is chosen in

the symmetric gauge to be ~A(~r ) = 1
2B(−y, x, 0), with B the magnetic field along the z-axis.

The frequency ω~k is related to the plasmon and will be derived later.

The interaction Hamiltonian Hint is determined by the potential Uin(~r, z) induced by the
remote electron and given by Poisson’s equation:

(∇2
2D + ∂2

z )Uin(~r, z) = −
4πe

ε0
{n(~r )− ns}δ(z), (3)

where∇2
2D is the 2D Laplacian, ε0 is the dielectric constant of the host material, and ns = N/Ω

is the average electron density of the 2DES. The solution of Poisson’s equation is given by

Uin(~r, z) = −
1

Ω

∑
~k

2πe

ε0k
exp[−k|z| ]n~k exp[−i~k · ~r ] , (4)



h. kato et al.: the remote plasmon polaron 237

with k = |~k|. The interaction Hamiltonian with the remote electron at z = d, Hint =
−eUin(~r, z = d) becomes then

Hint =
∑
~k

V~k√
Ω

exp[−i~k · ~r ] (a~k + a†
−~k

) , (5)

where we defined the interaction strength V~k as

V~k =
2πe2

√
Ωε0k

λ~k exp[−kd ] . (6)

Next, we determine the coefficient λ~k and the frequency ω~k using the f-sum rule [2]. The
2D electrons in the 2DES in the presence of a magnetic field are described by the Hamiltonian

H2DES =
N∑
j=1

1

2m

(
~pj +

e

c
~A(~rj)

)2

+
N∑
j 6=i

e2

2ε0|~ri − ~rj |
. (7)

The f-sum rule is obtained by evaluating the average 〈En|[n−~k, [n~k,H2DES]]|E0〉, where |E0〉
is the ground state, and |En〉 is the excited state of H2DES [1]. The f-sum rule was originally
derived without a magnetic field, however, the resulting expression remains the same even if
a magnetic field is applied. This f-sum rule is then∑

n

h̄ωn0|〈En|n~k|E0〉|
2 = N

h̄2k2

2m
, (8)

where h̄ωn0 = En − E0. Within the plasmon-pole there is only one collective excitation for
each wave vector ~k, and we can put ωn0 = ω~k which reduces the sum rule to

h̄ω~kλ
2
~k

= N
(h̄k)2

2m
. (9)

Substituting this expression into (6), we obtain

V~k =
2πe2

ε0

√
h̄ns

2mω~k
exp[−kd ] . (10)

The interaction potential is given in terms of ω~k, and we proceed now to evaluate this excitation
frequency.

The electrostatic potential Uex(~r, z) produced by the remote electron located at z = d
similarly obeys Poisson’s equation, such that the solution is given by

Uex(~r, z) =
1

Ω

∑
~k

U ex
~k

(z) exp[i~k · ~r ] , (11)

with

U ex
~k

(z) =
2πe

ε0k
exp[−k|d− z|] . (12)

In the self-consistent field approximation, the total field (potential) in the 2DES at z = 0,
U total
~k

(z = 0) is composed of the external potential U ex
~k

(0) and the induced potential U in
~k

(0),
such that

U total
~k

(0) = U ex
~k

(0) + U in
~k

(0) =
U ex
~k

(0)

ε(k)
, (13)
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where ε(~k) is the dielectric function. The induced potential at points away from the plane is
then given by

U in
~k

(z) = − exp[−k|z|]
ε(k)− 1

ε(k)
U ex
~k

(0) , (14)

where exp[−k|z|] represents the propagator which transfers the potential at z = 0 to arbitrary
z, as seen in eq. (4). In classical electrostatics the interaction energy between a test charge
placed at (~r, z) = (0, d) and the induced polarization is given byWcl = (−e/2)Uin(~r = 0, z = d).
Using eqs. (12) and (14), we obtain

Wcl =
∑
~k

πe2{ε(k)− 1}

Ωε0kε(k)
exp[−2kd ]. (15)

On the other hand, if the test charge at (~r, z) = (0, d) is described by the Hamiltonian (2),
second-order perturbation theory gives the energy Wqm =

∑
|V~k|

2/Ωh̄ω~k . Comparing the two
energies Wcl and Wqm, we obtain

ω2
k =

2πe2ns

ε0m
k

ε(k)

ε(k)− 1
, (16)

for the effective excitation spectrum of the 2DES [2]. The first part, ω0
~k

= (2πe2nsk/ε0m)1/2,

corresponds to the classical (k ≈ 0) 2D plasmon energy, while the factor ε(~k)/[ε(~k) − 1]
represents the modulation associated with the finite-k excitations of the electron gas.

What remains in achieving a complete description of Hint is securing a reliable description
of ε(k), the dielectric function of the 2DES in a magnetic field. In linear response theory, a
simple description of the dielectric function in a magnetic field which gives a general good
description of the system is given by ε(k) = 1 + qs/k, with the screening constant qs given
by [10]

qs =
2πh̄2

aBm
D(EF). (17)

Here, aB = h̄2ε0/me
2 is the effective Bohr radius and D(E) is the electronic density of states

D(E) =
∞∑
n=0

∑
α=±

1

2πl2B

1

Γ
√
π
e−(E−Enα)2/Γ2

, (18)

where we have used Gaussian broadening of the Landau levels. For short-range impurity
scattering the magnetic-field dependence of the Landau level width is given by Γ = Γ0B

1/2,
where Γ0 is a constant determined by the mobility of the 2DES [10,11]. In eq. (18) we use the
magnetic length lB = (h̄/mωc)

1/2 and the Landau level energy Enα = h̄ωc(n+1/2)+αgµBB/2,
with the cyclotron frequency ωc = eB/mc, the effective g-factor, α = +1 (–1) for the up (down)
spin state, the Bohr magneton µB = eh̄/2m0c, and m0 is the electron bare mass. The Fermi
level EF is determined from the condition for the total number of electrons, so that at zero
temperature

ns =

∫ EF

−∞
dED(E) . (19)

In fig. 1 the screening constant qs and the Fermi energy EF are shown as a function of the

magnetic field B for a 2DES with electron density ns = 3×1011cm−2 and Γ0 = 1.5 meV/T1/2.
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Fig. 1. – The magnetic-field dependence of the screening constant qs (solid curve) and the Fermi
energy EF (dashed curve) for a GaAs heterojunction with electron density ns = 3 × 1011cm−2 and

Landau level width Γ0 = 1.5 meV/T1/2. The units of energy and length are E0 = 10.7 meV and
aB = 9.90 nm, respectively.

Fig. 2. – The magnetic-field dependence of the polaron energy for various d. The peaks in each curve
occur at complete filling of the highest Landau level. The material parameters are the same as in
fig. 1.

The units of energy and length are E0 = h̄2πns/m = 10.7 meV and aB = 9.90 nm, respectively,
for GaAs; g = 0.52, ε0 = 12.5, and m/m0 = 0.067. When the highest Landau level is fully
filled, the Fermi energy EF changes abruptly and the screening constant qs reaches a minimum,
so that few electrons can shield the external field. In the limit of zero magnetic field, the energy
unit E0 equals the Fermi energy EF and the screening constant (17) reduces to qs = 2/aB, the
well-known 2D Thomas-Fermi constant. For simplicity we have neglected the finite extent of
the 2DES along the z-axis.

At this point, we have a full description of the interaction term between the remote electron
and the 2DES, Hint. Next we calculate the ground state energy of the remote electron
interacting with the 2DES using second-order perturbation theory in the Hamiltonian (2),
and further assuming that the remote plasmon polaron state has translational invariance. The
ground state energy of the remote electron h̄ωc/2 (minus spin) is shifted in energy δE due to
the interaction with the plasmons of the 2DES [12]:

E =
1

2
h̄ωc + δE, (20)

with

δE = −
1

Ω

∑
~k

|V~k|
2

h̄ω~k

∫ ∞
0

dτ exp[−τ + k2DB(τωc/ω~k)], (21)

and

DB(ξ) =
lB

2

2
{1− exp[−ξ]}. (22)

In fig. 2, this polaron energy correction δE is shown as a function of the magnetic field B
for different values of d, the distance of the remote electron to the 2DES, for the same
material constants used in fig. 1. Each curve oscillates with magnetic field due to the changing
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Fig. 3. – The energy shift due to a magnetic field, ∆ = W (d,B) −W (d,B = 0), as calculated from

the data in fig. 2. Solid and dash curves are shown for Γ0 = 2.5 and 3.0 meV/T1/2, respectively. Solid
circles are the experimental data of ref. [3].

Fig. 4. – The energy shift ∆ as a function of the electron density ns for B = 20 T, and various
d values.

occupation of the Landau levels which modulates the electron-plasmon interaction. It reaches
a maximum when the highest Landau level is fully filled. This oscillation is directly related to
the oscillations of qs shown in fig. 1.

An energy shift of the position of the tunneling peak caused by a magnetic field in a
resonant tunneling device was observed experimentally [3, 5]. Lok et al. [3] pointed out
that this energy shift is due to an acoustic-phonon–like excitation which appears by the
extraction of the tunneling electron out of the 2DES. Our model explains this vacancy as a
polarization of the 2DES due to the remote electron. When an electron tunnels from a 2DES,
i.e. from the emitter at z = 0, to the quantum well at z = d, this electron loses an energy
W (d,B) = E(d,B) − E(0, B). Because neither the kinetic energy h̄ωc/2 nor the spin term
depend on d, this energy difference is also represented as W (d,B) = δE(d,B)−δE(0, B). As a
function of the magnetic field, the energy W (d,B) oscillates and strongly affects the resonant
bias. When the magnetic field changes from zero to B, the resonant bias changes due this
polaronic effect by an energy shift ∆(d,B) = W (d,B) −W (d, 0).

In fig. 3, ∆(d,B) is plotted as a function of the external magnetic field B for the tunneling

distance d = 15 nm with Γ0 = 1.5 meV/T1/2 (solid curve) and 3.0 meV/T1/2 (dashed curve)
for ns = 3× 1011cm−2. These traces are compared to the experimental data of Lok et al. [3],
shown as solid circles. Our results follow qualitatively the oscillation of ∆(d,B) with magnetic
field, but they are about a factor of 4 smaller than the effect seen experimentally. This is
possibly a consequence of neglecting correlations in the 2DES which would likely enhance ∆
(see, e.g., ref. [8]). In fig. 4, the energy shift ∆(d,B) is plotted as a function of the electron
density ns for various d. Note that ∆(d,B) increases with ns as one would expect, but the
increase is less than linear in ns.

In conclusion, extending a previous theory of metallic electrons and its dielectric response,
we have formulated the Coulomb correlation between a remote electron and a 2DES as a
plasmon polaron problem. The polarization in the 2DES induced by a remote electron is
regarded as a collective excitation of plasmons whose frequency is modified by the dielectric
function. The energy correction due to this polaron effect is related to the experimentally
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observed energy shift in a tunneling experiment. Our results confirm the oscillation of the
energy shift with magnetic field. Notice, moreover, that the polaron-produced oscillations are
superimposed on the self-consistent adjustment of the 2DES density in experiments, where a
3D contact is effectively serving as a reservoir, and pins the Fermi energy. A direct capacitive
measurement of this self-consistent shift would be valuable in a more complete analysis of the
magnitudes and field dependence of the different effects. We are hopeful that this approach
motivates further experiments.
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