Journal of the Physical Society of Japan
Vol. 54, No. 1, January, 1985, pp. 236-244

Nonlinear Waves on an Electron-Charged
Surface of a Liquid *He Film

Hatsuhiro KaTO

Department of Engineering Science, Faculty of Engineering,
Hokkaido University, Sapporo 060

(Received September 14, 1984)

A study is made of nonlinear waves which appear on the surface of a “He film
when the film loads electrons on its surface. By using the reductive perturbation
method it is found that the nonlinear waves obey the Benjamin-Ono equations or
the Korteweg-de Vries equation according to the conditions imposed on the

system.

Introduction

§1.

A remarkable feature of nonlinear waves is a
formation of stably propagating solitary waves
called solitons which exist because of the dyna-
mical balance between dispersion and non-
linear effects. Solitons are now playing im-
portant roles in various fields of physics. In the
system of superfluid “He film the study of non-
linear surface waves is regarded as naturally
extended one of the linear third sound. In this
viewpoint Huberman and Nakajima et al.
considered a nonlinear wave in a thin liquid
“He film,! ~* and predicted a possible ordered
train of solitons. Some evidence of such a
soliton train has been experimentally ob-
served by Kono et al*) On the other hand,
there are some investigations of the electron-
charged surface of liquid “He. In this system the
existence of electrons involves the softening
of the surface wave indicating that the group
velocity vanishes at particular wave numbers.
Moreover the softening can be controlled by an
external electric field applied perpendicularly
to the helium surface. Taking into account of
this property, Mima and Ikezi®) pointed out a
possibility of a surface envelope soliton which
obeys the nonlinear Schrédinger equation. The
above-mentioned consideration was per-
formed under the condition that the thickness
of the “He film is much larger than the wave
length. In this paper we investigate other types
of solitons which will be expected when the
thickness of the film is small compared with the
wave length.
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Geometrical configuration of the system is
shown in Fig. 1. A liquid “He film with a
thickness d on an appropriate substrate loads
electrons on its surface. We take the x axis
parallel to the equilibrium surface and the y
axis perpendicular to the surface, and consider
one-dimensional waves propagating along the
x axis. By the external electric field and the
image charges which appear both the sub-
strate and the electrodes set at y=1[,, —/,, the
electrons are pushed against the surface. We
introduce pressure p, to describe this effect.
The external field can be controlled by the
voltage difference ¥ between the two elec-
trodes. We indicate the displacement of the
surface as a(x, t) and the dielectric constants of
a “He vapor, liquid “He and the substrate as
&, & and &y respectively. The maximum
electron density which the surface can support
is about 10° cm 2.9 In this paper the electrons
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Fig. 1. Geometrical configuration of the system.
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are treated as a continuously charged object so
that the wave length must be much larger than
the interval between the electrons. If we con-
sider then the wave length is not small com-
pared with the film thickness d, the relation
d>»./107% cm should be satisfied.

Utilizing hydrodynamics and electrostatics,
the equations are derived which govern the
waves on the charged surface of the liquid
“He film. These equations are so complicated
to be treated rigorously that we use the re-
ductive perturbation method to obtain more
simpler equations. The nonlinear equations
thus obtained are the Benjamin-Ono (B-O)
equations or the Korteweg-de Vries (KdV)
equation. When we employ a metal for the
substrate we obtain the B-O equation or the
KdV equation corresponding to the values of
the external electric field. If we use an insulator
for the substrate we obtain the B-O equation.
These equations have soliton solutions. To see
the evolution of the nonlinear waves we
estimate the evolution time and the evolution
length for which an initial pulse travels until it
grows into a soliton. The evolution time is
determined from the linearized one of the non-
linear equation. And the evolution length is
estimated as the length for which a pulse travels
during the evolution time with the velocity of
the linear wave.

In §2, the basic equations governing the
surface motion of the film are derived with as-
sumptions that liquid “He is an ideal fluid and
the electrons move freely along the surface. A
dispersion relation of the surface wave is also

(g_ij)*;[(%b)*@f) ]*9“ e

Here the terms with the subscript 1 are evalu-
ated on the surface, g is the gravity constant,
p the density of the liquid, v the surface ten-
sion and « the van der Waals constant indicat-
ing the strength of the van der Waals force
between “He and the substrate. In this paper we
assume that the film is relatively thick so that
the effect of the van der Waals force is negli-
gibly small. The effect, however, shall be main-
tained in order to compare our result with that
of Nakajima et al.® All the effects of electrons
loaded on the *He surface are expressed by the
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derived. In §3, using the reductive perturba-
tion method, we derive the nonlinear equa-
tions from the basic equations under three
conditions imposed on the system. In §4,
considering the evolution time and evolution
length, we discuss roughly the evolution of the
nonlinear waves. In this paper use is made of a
special operator P, which is introduced already
by Mima and Ikezi.>» In the appendix, we
shall examine the reductive perturbation
method when equations contain the operator
P.

§2. Basic Equations

Assuming that liquid “He is cooled below
the A-point, we treat liquid “He as an incom-
pressible ideal fluid. Since the super flow is
irrotational, we can introduce the velocity
potential &(x, y, t) which satisfies

0* 9

<ax tor )‘p 0
This equation is subject to the kinematical and
the dynamical conditions. The kinematical

conditions are that no fluid pass through the
bottom:

@.1)

0
E}Q(x, —d, 1)=0, 2.2

and the continuity equation holds at the
surface:

da, (00) Ga_(00) _,

ot \ox),0x \oy),

The dynamical condition requires Bernoulli’s
theorem at the surface:

2.3)

7 3%a  p.

ST, =0 2.4)

pressure p, in eq. (2.4). The pressure p, can be
described in terms of the surface displacement
a(x, t). Derivation of this relation will be
presented in the latter half of this section.
We shall obtain an adequate solution of eq.
(2.1) by using an expansion of the form
B(x, y, )= ZO +d)Y'du(x, 1) (2.5)
Substituting this expression into eq. (2.1) and
then taking into account of eq. (2.2), we obtain
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P Substitution of eq. (2.6) into egs. (2.3) and
&(x, y, t)=cos l:( y+d) 5;] do(x,2). (2.6) (2.4) yields the simultaneous equations for

a(x, t) and ¢(x, t), which express the motion
of the surface.

d+a'u;—vy=0, (2.72)

/ T !
(d—:fa)z s+ % =0, (2.7b)
where u=0®/0x and v=0®/dy. The dash and the dot indicate derivatives with respect to x and ¢
respectively. Equation (2.7b) is the result of differentiation of eq. (2.4) with respect to x. To
proceed further we assume that the maximum amplitude m of a(x, ) is small compared with the
film thickness d, while the dominant wave length / is large compared with d. Then we can rewrite
eqs. (2.72) and (2.7b) in terms of two small parameters e=m/d and §=d/I.” To the first nonvanish-
ing order in ¢ and J, we obtain the following equations.

o
Uy +uuy o0y +ga’ + >

1
d+(d+a)f'+fa'—3d3f'"=0, (2.8a)
, 3¢ 12« \, d*,, T, D
f+f +<9+W—Fa>a —7f ——;a +7)-—0, (2.8b)

where f(x, t)=0¢q(x, t)/0x.

Now we derive the relation between p.(x, ¢) and a(x, t) under the assumption that the electrons
move freely along the surface so that the surface is always equipotential.®) First, we consider the
electrostatic potential ¢(x, y, ¢) which satisfies

02 02
8(5}5 + é?)qﬁ = —4nodé(y—a), 2.9)

where o(x, t) is the charge density projected on the x axis, and ¢ stands for the dielectric constants
of the helium vapor (g,), liquid helium (g,) and the substrate (¢;). Equation (2.9) is subject to the
following boundary conditions.

lim ¢=0, (2.10)
y—ta
%2=0 atJ’=11, —129 (2.11)
and
¢|y=—d+0=¢ly= -d-0> (2.123)
o o
3 p=-aro=3 ly=-a-0, (2.12b)
d 0
82£|y=—d+0=836_‘$|y=—d—0' (2.120)

It is convenient to introduce an operator P which is defined as®
PY F e**=Y |k|F, e~ (2.13)
K 3
Then the solution of eq. (2.9) satisfying the boundary conditions (2.11), (2.12a), (2.12b) and
(2.12¢) is given by
—E,y+[chyP—shyP-L,Jh,, (a<y<ly)

—E_y+[chyP+shyP-L_Ja_, (—d<y<a)

G+E_[—d+(y+d)/e]
+ sh(l, + y)P b
eshdPch(l, — d)P+ chdPsh(l, — d)P( -

¢

G), (—lL<y<-d), (2.14)
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where
L, =coth /,P, (2.15a)

_echdPeh(l,— )P+ shdPsh(l, — )P
-~ gshdPch(l, — d)P + chdPsh(l, — )P’

=% j dxh_, e=¢5/¢,.

Here, E, and E_ are the average electric fields above and below the “He surface, A is the system
length. 4, and h_ are appropriate functions of x and #, whose explicit forms are obtained by
substitution of eq. (2.14) into eq. (2.10). The resulting expressions to the third order in a(x, t) are
as follows.

(2.15b)

1
hi=Ei[aiPLia+PLi(aPLia)—EaZPza:I. (2.16)
The average electric fields E, and E_ are connected with the charge density o, on the equilibrium
surface and the voltage difference ¥ between the upper and the lower electrodes as follows.
dnoy=¢,E, —e,E_, (2.17a)

lz—d
&

V=—E+11—E_<d+ >+% j‘dx(h+—h_). (2.17b)
Equation (2.17a) is obtained by integrating eq. (2.9) in the region which contains the “He surface,
and eq. (2.17b) is yielded by substitution of eq. (2.14) into V=¢(y=1,)—¢(y=—1).

To express the pressure p, due to the electrons in terms of the displacement a(x, ¢), we write the
electrostatic energy as a functional of a(x, r). Substituting eq. (2.14) into the definition of the
energy U={ dve(y¢$)?/8n and transforming the volume integral to the surface, we obtain

Uld]= %t j dx[<81¢ g(f)y:,l B <82¢g_<yp>y= J

1
=3n jdx[—leJthr +¢&,E_h_]+const. (2.18)

Let the surface of “He be displaced virtually by the amount da, then the energy conservation re-
quires

1 oh oh_
j dxp.ba= & j dx[—elEJr‘—éf- +e,E_ ga—:léa. (2.19)
Here da is an arbitrary function so that we have the relation
g, E? &,E?
pim -t e s a2

where
1
S.=1+2PL,a+2PL,(aPL.a)+(PL.a)*—aP%a— -2-P2a2.
The relation between o(x, ¢) and a(x, ¢) is obtained by integrating eq. (2.9) within a small space
which contains the “He surface as follows.

_&uE, & E_
0= 47 Q+_ 4 Q—s (2'21)

where

1
Qi =1 iPLia'*‘PLi(aPLia)— EPZCZZ.
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Linearizing egs. (2.7a) and (2.7b) with respect to a(x, t), we can obtain the dispersion relation as
follows.
o= g+ﬁ+£k2——l—(s E2L,+¢e,E*L )k |k tanh dk (2.22)
k 0d* " p Grp \ErE e T L >
where L, and L_ are respectively the expressions of L, (2.15a) and L_ (2.15b) in which the
operator P is replaced by |k|. From eq. (2.22) we can derive various dispersion relations as ever
reported.>+8+%)

§3. Nonlinear Waves

In this section the nonlinear waves are considered under the three conditions imposed on the
system. We apply the reductive perturbation method to egs. (2.8a) and (2.8b) in order to see the
asymptotic behaviors of the surface waves. For the sake of simplicity, we assume henceforth that
/, and /, are sufficiently large compared with the film thickness d so as to satisfy the relations L, =1
and L_ =coth (dP+0) (0 =coth™'e;/e,) in egs. (2.15a) and (2.15b).

Case 1. We first consider a case when a metal is employed for the substrate and the average
field E. is different from zero. Since &5, the dielectric constant of the substrate, is infinite, we have
L_ =coth dP. The same procedure as we derived eq. (2.8b) from eq. (2.7b) yields the following
equation from eq. (2.20).

2 2 &,E% 3a—
pl=— eft + sffn da"+ 2= —“dz—d a. G.1)

Making use of eq. (3.1), we write eqs. (2.8a) and (2.8b) in the matrix form as follows.

oU  [f d+alou 0 0,0U_ ([0 0 3 [0 —d6|a1U_o .,
alc 5 lax | —erzaofax Fo —22)atp o e =% G2

where

’

Pa’' +

U=(a, ),
C=g+3a(d—4a)/pd® +e,E*(3a—d)/4npd?,
= —(t—¢&,E2d/127)/p.

The dominant dispersive term comes from the third of the left hand side of eq. (3.2) and the fourth
term contributes only to the small correction to the dispersion. We take the first three terms of
eq. (3.2) and apply the reductive perturbation given in the appendix to this equation. Then we ob-
tain the following equation.

da 3 o\ da &E}dO_
%*m(g'/?')“a—c‘s—npco agFe=0 @.3)
E=x—cot, n=t,

co=[d(g+30/pd* — e,E|dnpd)]*/>. (3.4)

This equation is known as the Benjamin-Ono (B-O) equation.'® It is more familiar to express P,
with H as follows.

0
P:a(l)=— 6—€Ha(f), (3.5)
where H represents the Hilbert transformation
1 ()
Ha(é)=-p.v. dn—=. 3.6
a@=ypv. | D .6

Here p.v. stands for the principle value of the integration.
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Case 2. We consider a case where a metal is employed for the substrate and E. is equal to zero.
In this case as the dispersive term in eq. (3.3) vanishes, we have to consider the first four terms of
eq. (3.2). The same treatment as in case 1 yields the following equation.

da 3( a\da d(3t 3u  Na_,
on " 2e,\9 " pd®)?E beg\pd® pd* 9)aE =

E=x—cot, n=t,

co=[d(g+30/pd* — e, E2 [Anpd)]'"?,

3u d3a

(3.7)

(3.9)

which is known as the KdV equation and agrees with that given by Nakajima et al. 3
Case 3. An insulator is used for the substrate. In this case ¢;, the dielectric constant of the
substrate, is finite. The following B-O equation is derived by the same procedure as in case 1.

da 3 o\ da & E%+ee,EX 0
a9 )5 e PO (39)
E=x—cot, n=t,
co=[d(g+3a/pd*)]"/. (3.10)
In this case, ¢, the velocity of the linear wave solution of the form
at long wave length, is not affected by the ex- u=—2i? sech(icy —41c%). (3.14)

istence of the electrons in contrast with egs.
(3.4) and (3.3).

Now we have two kinds of nonlinear equa-
tions under the three conditions imposed on the
system. The standard forms of these equations
are written in the following way,

ou ou 0%u

6_+2u6 +Ha 5 =0, (3.11)
for the B-O equation and
ou 0u *u
o —6 6 =— =0, (3.12)

for the KdV equation. In deriving eq. (3.11)
from egs. (3.3) and (3.9), we transform the
variables ¢, ¢ and a into t=t/t,, y=¢&/I; and
u=a/l, where t, and /; are the units of time
and length respectively. We take that t,=
4co/3(g—a/d*) and [=[te,E2d/8npc,]t'* for
eq. (3.3), and t,=4c,/3(g—a/pd*) and I[=
[t(eEZ +ee, E2)d/8mpc,] ? for eq. (3.9). To
obtain eq. (3.12) from eq. (3.7), we use the
transformation; t=—ty, &=Ly and a=[ly,
where we take t,=4cy/(g—a/pd*) and I =
[t,d*(3v/pd® —3a/pd* —g)[6c,]3. Tt is well
known that the B-O equation (3.11) has a
single soliton solution of the form

2V
Viy—tV)*+1°
and the KdV equation (3.12) has a soliton

u=

(3.13)

Here V and «x are positive constants.

§4. Discussion

We have considered the nonlinear waves on
the electron-charged surface of liquid “He and
obtained the B-O equations and the KdV
equation corresponding to the three condi-
tions imposed on the system. These equations
have the soliton solutions of the forms (3.13)
and (3.14). We would see the evolution of the
nonlinear waves by the inverse scattering
methods.”>*V For simplicity we take, however,
a convenient way to define the evolution time
from the linearized ones of egs. (3.11) and
(3.12) and to estimate the evolution length
with which our solitons may be experimentally
concerned.

First we consider the KdV equation (3.12).
At t=0 if we generate an initial pulse with
width W of the form

Up IHIS W2,
u(ys 0)={ ° @4.1)
0, lul>Wp,

the pulse evolves according to the linearized
one of eq. (3.12) as follows.

u(y, ©)= j UAi(x) dx,  (42)

where Ai(x) is the Airy function and ¢, =
(2x+ W)/(247)'/3. Solitons exist under the
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balance between pulse sharpening due to the
nonlinear effects and pulse spreading due to
dispersion. If we take only the dispersion
effects into account, we may consider that the
pulse disperses monotonically. We define the
evolution time 7, as the time for which the

pulse (4.2) travels until its height reduces to

1/10 of its initial value. The time z, may be
considered as the time which it takes for an
initial pulse with width W to grow into soliton.
From eq. (4.2) we obtain the evolution time
approximately

1,=15 W2, (4.3)

The same discussion yields the evolution time
for the B-O equation (3.11) as follows.

t.=4 W2 4.4

where we use the form (4.1) as an initial pulse.
The evolution length, for which the initial pulse

Case 1

(Vol. 54,

Table I. Estimates of the evolution time f. and the
evolution length /.. Here d is the film thickness, n
the electron density on the surface and ¢, the velo-
city of the linear wave.

Case 1 Case 2 Case 3
d (cm) 10-2 10-2 10-2
n (cm~?) 10° 5% 108 10°
¢o (cm/sec) 2.19 2.19 3.13
t. (sec) 0.046 5.9 0.50
I. (cm) 0.10 13 1.6

travels until it grows into soliton, may be
estimated as /,=cyt,, Where ¢, is velocity of
the linear wave.

In Table I we calculate c,, /. and z, under the
three conditions treated in the previous section.
As seen in Table I we set d=10"% cm and n=
10° cm ™2 except for Case 2. The average fields
E, and E_ are taken such that E, =—FE_=
27n0, for cases 1 and 3 and £, =0 and E_=

0.2

-0.2

\
]
/
/
N

!
1
!

o

Case 3

Surface displacement @ (ina unit of lg )

Charge distribution d/de

-6 -8

X-coordinate (in a unit of lg)

Fig.2. The surface displacement a (full line) and the charge distribution ¢/o, (dashed line) when a single
soliton is generated for each case. For each figure the axis of abscissas is located on the bottom of the *He

film.
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—4no, for case 2. For case 3, CaF, (¢;=6.7)
is used for the substrate. When we fix the
electron density and the voltage between the
electrodes, it is important to consider the
instability of the surface.’'?~'4 If we take
n=10°cm~2 in case 2, the instability will
appear at a long wave length and the calcula-
tion loses its validity so that we set n=>5x
108 cm ™2 for this case. We take W, the width
of the initial pulse, to the width of the single
soliton whose height is 6/10 of the film thick-
ness. In Fig. 2 such single solitons are de-
picted. The full line indicates the displacement
of the surface and the dashed line does the
charge distribution. It should be noted that the
charge distribution of the surface satisfies o/
0, >0. Since there is no other quantity than the
electrons on the surface, any appearance of
positive charge destroys the meaning of the
present discussion.

If we can solve the problems how to generate

En

where U is a colum vector with N components, H,,

6U
]"[ <H”6t+K
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an initial-pulse and detect the displacement of
the surface, we could catch the existence of

solitons.
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Appendix A: The Reductive Perturbation
Method Including Operator P

A general discussion on the reductive per-
turbation method is made by Taniuti and
Wei. Since we use in this paper the operator
P defined in eq. (2.13), we examine how to
modulate their discussion when an equation
contains the operator P as follows.

0 +M¢Px> U=0, (A-1)

*0x

K, M, (x=1,---, p)and 4 are N x N matrices

and the elements of them are functions of U. In the third term of the left hand side the operator
P, is included. Here the subscript x indicates the independent variable. A parallel discussion to
that of Taniuti and Wei'® leads to the nonlinear equation of the form

ou, c ou,
%-’_ron(un—uOn)a_é +Dun_0a
E=x—cot, n=t,

(A-2)

1
c= 1—1070 Ly[(Roy* V) Aly=u.Ro>

1

P
D=7+—71L, [] I:(—Co O+Ka0)a€+MaOP§:|RO'

LORO a=1

Here U, is a nonperturbed constant solution of
eq. (A1), ¢, is an eigenvalue of 4, (=A4(Uy)),
R, and L, are the right and left eigenvectors of
A, with an eigenvalue ¢y, u,, Uy, and r,, are
respectively n’th components of U, U, and

Ry and we put H,, = H/(U,), K,,=K,(U,) and
MaO=Ma(U0) (06—1, :p)
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