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We discuss the feasibility of the one-dimensional theory by which the transmission of acoustic waves from a solid
cylinder into a liquid is analyzed with the acoustic impedance. For this purpose, experiments were performed on a
cylinder made of Cu with a size of 1.98mmº © 51.96mmt. The frequency of acoustic waves was varied from 0.80 to
1.3MHz. The characteristics of the Pochhammer mode in the solid cylinder are clarified by certain equivalent acoustic
impedances. At low frequencies from 0.80 to 1.0MHz, several definitions of the equivalent acoustic impedances work
effectively. At intermediate frequencies near 1.1MHz, the equivalent impedances available are those defined near the
lateral surface of the cylinder. At high frequencies from 1.15 to 1.3MHz, the experimental transmission rate of acoustic
waves decreases considerably, and the adequate impedance is obtained using the energy flux and the axial component of
the velocity field in the cylinder.

1. Introduction

The transmission property of acoustic waves from the
cylinders into water is one of the important applications.1) We
have reported experiments on longitudinal waves transmitted
into water from thin cylinders or disks made of Cu with a size
of 30:0mm� � 10:0mmt, of Ag with a size of 30:0mm� �
8:0mmt, and of periodically layered Cu and Ag with a size of
30:0mm� � 0:5mmt.2,3) Furthermore, the transmission rate
has been analyzed with the acoustic impedance using a one-
dimensional theory. However, the specimens used did not
have a large length in the axial direction. In this paper, we
discuss the limitation of the one-dimensional acoustic
impedance theory in a long solid cylinder.

Historically, the theory of acoustic waves governed by the
Pochhammer frequency equation in infinitely long cylinders
was first published in 1876.4,5) However, owing to its
complexity, detailed discussions appeared only from the
1940s.6,7) In those initial works, Pochhammer modes were
treated with other modes like flexural modes and torsional
modes.6) As the frequency is increased indefinitely, one
branch of Pochhammer modes approaches the Rayleigh
surface mode, which has a velocity less than the velocity of
the transverse mode in bulk media, and the phase velocities
of the other branches approach the transverse mode
velocity.7) The detailed dispersion relations of Pochhammer
mode were discussed by Onoe et al. including real, pure
imaginary, and complex branches.8) In experiments on
traveling acoustic wave pulses, it was shown that wave
forms of pulses deform widely in space at a certain
frequency.9) This deformation originates from the coupling
of the Pochhammer mode with one of the flexural modes due
to the imperfectness of the lateral surface. In the dispersion
branches of Pochhammer modes, the phase velocity and the
group velocity have opposite directions.10) This is called
backward-wave transmission and, in this case, the directions
of energy flux are opposite those of the phase velocities.

The features of traveling acoustic waves in the cylinders
resemble those of wave guides with a rectangular cross
section or plates, and they are often discussed simultane-
ously.11) In this case, extensional motions in isotropic media

were treated by two-dimensional approximation, and dis-
persion relations were compared with those by three-dimen-
sional approximation,12) and it was shown that the exact
solutions for bars with an infinite length are composite of
dilation and equivoluminal waves.13) Furthermore, waves
in anisotropic media were discussed by one-dimensional
approximation, in which waves in a rectangular cross section
were expanded with Legendre polynomials, and those in a
circular cross section with Jacobi polynomials.14)

To avoid the intricate boundary conditions in acoustics for
semi-infinite media, it is effective to employ analogies of the
electric transmission line theory with characteristic impedan-
ces.15) By this method, it is possible to consider acoustic
waves in liquids, P-, SV-, and SH-waves in bulk solids,
Rayleigh surface waves, leaky Rayleigh waves, Lamb waves,
and Love waves. The boundary conditions are treated as
equivalent circuits connected to transmission lines. The
correspondences for the characteristic impedances in elec-
tricity are the acoustic impedances, which resemble the
stiffnesses in elastic theories.

Experimentally, elastic constants were obtained to deter-
mine the velocities of pulses.16,17) In those works, compli-
ances extended to complex values were measured, and their
reciprocals were related to acoustic impedances.

For examples of applications and interests, elastic plates on
rigid solids are applied as acoustic wave guides,18,19) and,
in recent years, at frequencies of up to several GHz, the
vibrational properties have been studied in nanostructures
in which gold plates or copper wires are periodically
arranged.20,21) Furthermore, in cylinders that have a volume
of 0.3 µm3 and heights of 4–5µm, a whispering gallery mode
was observed,22) and in thin cylinders and/or disks acoustic
vibrational motions were analyzed theoretically.23) Further-
more, poly(methyl methacrylate) micro/nanobeams with a
length of 0.1 µm, a width of 0.05 µm, and a thickness up to as
low as 47 nm were fabricated, and Young’s modulus was
trimmed experimentally.24)

In this paper, we concentrate on the transmission property
of Pochhammer mode from Cu cylinder into water. In
Sect. 2, experimental devices and their configuration are
explained briefly. In Sect. 3, experimental results are
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compared with the theory with a one-dimensional impedance.
In Sect. 4, we examine another definition of acoustic
impedances and clarify the characteristics of the Pochhammer
mode. In Sect. 5, we summarize the results.

2. Experimental Procedure

The specimen for the experiment is a solid cylinder made
of Cu, with a diameter of 1.98mm and a length of 51.96mm.
It is supported by a porous rubber layer with a thickness of
5mm, as is shown in Fig. 1; its end is raised by 3mm. The
upper end of the cylinder is in contact with the ultrasonic
transducer using silicone grease as couplant. The transducer
is in a plastic cover to make sure that its contact plane is
parallel to the specimen’s end on the porous rubber layer.
Furthermore, the transducer is weighted down by a ring with
a mass of 53.3 g for steady contact with the end of the
cylinder. The transducer itself weighs 21.0 g.

The transducer is connected to the oscillator and driven by
an RF voltage of 7.07Vpp, and its exerted frequencies are
from 0.80 to 1.3MHz in steps of 1 kHz. The lower end of the
cylinder (3mm) is immersed in distilled water (0:06� 10�4

S/m), and the sensor of hydrophone is set 7mm below the
end of the cylinder in water. Pressure signals in water are
received by the hydrophone and sent to the amplifier
(oscilloscope). They are then processed by FFT to extract
the strength of the transmitted acoustic waves with the same
frequencies as those of the transducer exertion. The time
window is 1.00ms for the FFT. The distilled water has a
volume of 7.7 L and is foamless.

To protect the transducer in the experiments, at each
frequency, the transducer was intermittently excited by the
oscillator with a 3.0-s mark after a 1.0-s space. One
millisecond later from the beginning of the mark, signals
from the hydrophone were started to be obtained for the
analysis by FFT. Therefore, in the Cu cylinder, the stationary
waves were grown up as in the case of CW excitations. The
effect of multiple reflections between the hydrophone and the
Cu cylinder and/or water surface was neglected, because,
before the experiments, the numerical calculations by FEM
showed no remarkable evidence that multiple reflections
interfered with the measurements of acoustic waves that

reached the hydrophone directly from the Cu cylinder. In the
experiments, we may assume that the acoustic waves were
scattered by the hydrophone sensor with a diameter of
1.4mm at the tapered tip and by the support of hydrophone
placed underwater within a vertical depth 15 cm, and they
then spread and weakened in the water bath with a horizontal
area of 30� 17 cm2.

The experiments were performed at room temperature at
atmospheric pressure (22.5 °C, 1015 hPa), and the temper-
ature of distilled water was 20.5 °C.

3. Experimental Results and Theory

Transmission rates were obtained by experiments on
acoustic waves generated by the transducer and measured
through the cylinder as the Pochhammer mode and
penetrated into the distilled water as pressure waves. They
are shown in Fig. 2(b). The experiments were repeated six
times and the measured transmission rates were averaged.
At frequencies from 0.80 to 1.0MHz, the peaks of the
transmission rates appear with wider frequency intervals. At
frequencies near 1.1MHz, the peak intervals become
narrower, and the dips become shallower. Furthermore, at
frequencies from 1.15 to 1.3MHz, the transmission rates
become almost null, and there are no pressure waves in water.
Also, at a frequency of 0.931MHz, there are no waves in
water. This is due to the coupling of the Pochhammer mode
with the flexural mode.9)

In a one-dimensional transmission model of acoustic
waves that pass through the semi-infinite plate A with a
thickness d from material O (transducer) to material W
(water), the transmission rate T is expressed as

T ¼ 4ZO=ZW

ð1þ ZO=ZWÞ2 cos2 kd þ ðZO=ZA þ ZA=ZWÞ2 sin2 kd
;

ð1Þ
where the phase factor of the acoustic waves is assumed
as e�ikzþi!t, which is also the same as the factor of the
Pochhammer mode. Further, z and k are, respectively, the
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Transducer
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Fig. 1. Configuration of the experiment. The transducer is driven by the
oscillator and the acoustic waves are sent to the Cu cylinder. Waves
transmitted from the cylinder to the distilled water are detected by the
hydrophone.
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Fig. 2. (a) Ratio of the Cu impedance ZA to the mean equivalent
impedance (MEI) ZS calculated theoretically and (b) transmission rates
obtained by experiments and theory with MEI in one-dimensional
approximation.
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coordinate perpendicular to the plate and wave number. The
acoustic impedances are ZO for the transducer, ZA for the
plate, and ZW for water.

When we apply the one-dimensional model to the cylinder,
the waves transmittable into water are dilatation waves [see
Eq. (A011) in Appendix]. However, equivoluminal waves [see
Eq. (A012) in Appendix] must also be considered, because the
free surface conditions of the lateral surface of the cylinder
cannot be satisfied without equivoluminal waves.9)

To seek the one-dimensional equivalent acoustic impe-
dance that can be substituted for the acoustic impedance ZA of
the semi-infinite plate in Eq. (1), we discuss the energy flows
in an infinite cylinder. The axial coordinate z is set along
the cylinder, and the radial coordinate r and the angular
coordinate º are set in a circular cross section. The angular
frequency is denoted as ½. The lateral surface is assumed to
be a free surface, and the vibrations in the º directions are
omitted. In this case, the acoustic waves satisfy the
Pochhammer frequency equation5) in infinitely long cylinders.
The lower branches of the dispersion relations are shown in
Fig. 3. In the case of our experiments, the first branch of the
Pochhammer mode is concerned. In Fig. 3, a branch of the
flexural mode is also depicted, and it crosses the first branch of
the Pochhammer mode at 0.975 and 1.783MHz theoretically.

The energy does not flow in the r- or º-direction, and only
the nonzero component of the Poyinting vector is in the
z-direction denoted as PzðrÞ. The total energy flux is obtained
by integrating it as

Jz ¼
Z a

0

2�rPzðrÞ dr; ð2Þ

where a is the radius of the circular cross section. The
z-component vzðrÞ and the r-component vrðrÞ of the velocity
field contribute the energy flows in the cylinder. The main
contribution to the transmission into water is the energy flow
by vzðrÞ. When we assume that the z-component of the
velocity field is uniform in the circular cross section and put
it as _u, then the total energy flux can be approximately
expressed as

Jz
�a2

’ 2

a2

Z a

0

rPzðrÞ
1

2
jvzðrÞj2

1

2
j _uj2 dr ¼ 1

2
ZSj _uj2: ð3Þ

In this approximation, we define ZðrÞ and ZS as

ZðrÞ ¼ PzðrÞ
1

2
jvzðrÞj2

; ð4Þ

ZS ¼ 2

a2

Z a

0

rZðrÞ dr � hZi: ð5Þ

We call the above quantities as the local equivalent
impedance (LEI) and mean equivalent impedance (MEI),
respectively. The notation h� � �i expresses the mean across the
circular cross section. The explicit form of Eq. (4) is
explained in Appendix B.2. In the above expressions, we
emphasize the dependences on the radial coordinate r,
however, they also depend on the frequency. The ratio of
the acoustic impedance ZA of bulk Cu to ZS in Eq. (5) is
shown in Fig. 2(a) against the frequency. The theoretical
transmission rates are calculated using ZS instead of ZA in
Eq. (1) and are shown in Fig. 2(b). The thickness d is set as
the length of the Cu cylinder. We have estimated ZO ¼ 5ZW
from the swinging widths vs frequencies of the experimental
transmission rates. In the frequency range from 0.80 to
1.0MHz, ZS has finite values and the transmission rates
calculated theoretically have certain agreement with those of
the experiments. In the vicinity of 1.1MHz some discrep-
ancies have occurred, which is discussed in the next section.
In the range from 1.15 to 1.3MHz, the acoustic waves in the
cylinder are not transmitted to water as is shown in Fig. 2(b)
both theoretically and experimentally. The theoretical
calculation shows ZS ! 1 (ZA=ZS ! 0), and the trans-
mission is suppressed. In such a frequency range, PzðrÞ 6¼ 0 in
spite of vzðrÞ ¼ 0, which means the energy flows by the r-
component of the velocity field. Therefore, on the lower end
of the Cu cylinder immersed in water, the shear components
vrðrÞ are higher than the pressure components vzðrÞ, and the
transmission rate vanishes.

The parameters used in the theoretical calculation are
summarized in Table I.

4. Discussion

At frequencies from 1.0 to 1.1MHz, as shown in Fig. 2(b)
in the previous section, the theoretical transmission rates have
discrepancies from those of the experiments whose troughs
have higher values than the theoretical values. When we
substitute ZðaÞ for ZA in the transmission formula Eq. (1),
the calculated transmission rates become as is shown in
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Table I. The parameters used in the theoretical calculations are density µ,
Young’s modulus E, Poisson ratio ¯, transverse mode velocity VT,
longitudinal mode velocity VL, and acoustic impedance Z ¼ �VL for
longitudinal mode in bulk media. Lamé constants of Cu become
� ¼ 10:558� 1010 Pa and � ¼ 4:8325� 1010 Pa.

µ E ¯ VT VL Z ¼ �VL

(g cm¹3) (Pa) — (km s¹1) (km s¹1) (kgm¹2 s¹1)

Cu 8.93 12:98� 1010 0.343 2.3263 4.7587 2:495� 106

H2O 0.999 — — — 1.483 1:482� 106
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Fig. 4(b), where ZðaÞ is the LEI defined by Eq. (4) at r ¼ a.
The ratio of ZA to ZðaÞ is also shown in Fig. 4(a). With the
substitution, the transmission rates show agreement in a wide
frequency range from 0.80 to 1.1MHz. This implies that the
LEIs are almost the same as those of the MEI at any point in
the circular cross section of the Cu cylinder.

However, in the upper range of over 1.14MHz, ZðaÞ
cannot explain the suppression of the transmission rate.

The theoretical LEI ZðrÞ is plotted against r at several
frequencies in Fig. 5(a). From 0.80 to 1.0MHz, the LEIs are
almost the same. Especially, at 0.975MHz, the values of ZðrÞ
are exactly the same as ZðaÞ; also, ZðrÞ does not depend on r.
ZðrÞ ¼ �!=k, where µ is the density of Cu and !=k is the
phase velocity

ffiffiffi
2

p
VT. This frequency corresponds to 0.931

MHz experimentally, and the Pochhammer mode couples
with the flexural mode.9)

At frequencies near 1.1MHz, the LEIs are lower near
the lateral surface, r=a ¼ 1, than near the center. Therefore,
the energy flows near the lateral surface. This is also clear
when we see the dilatation and rotation shown in Figs. 5(b)
and 5(c), respectively, where both values are large near the
lateral side. This is the reason why the transmission rates
can be explained by the LEI ZðaÞ in the wide frequency
range. Furthermore, the first branch of the Pohhammer mode
and the branch of the flexural mode separate from each
other, as shown in Fig. 3 from 0.975 to 1.783MHz.
Therefore, the effects of the flexural mode is weakened at
these frequencies.

At frequencies higher than 1.15MHz, as shown in
Fig. 5(a), the LEI ZðrÞ has infinitely large values at a certain
place on the cross section. As a result, the transmission rate
becomes lower. Because the Pochhammer mode also couples
with the flexural mode at a frequency of 1.783MHz, the
transmission of the acoustic waves into water should be
suppressed experimentally at these frequencies.

When we equate j _uj2 in Eq. (3) with hjvzðrÞj2i, another
MEI can be obtained (see Appendix B.1) as follows:

�Z ¼ Jz=�a
2

1

2
hjvzj2i

¼ hPzi
1

2
hjvzj2i

: ð6Þ

When we substitute �Z for ZA in Eq. (1), the theoretical
transmission rates show agreement with the experimental
values at frequencies lower than 1.0MHz. We also obtained
the same results using other expressions of equivalent
impedances explained in Appendix B. At lower frequencies,
these definitions are almost equal to the well-known
expression ZA ’ �!=k in the bulk, as is shown in Fig. 5(a).2,3)

A theoretical analysis of acoustic waves in a finite cylinder
has already been published23) in which some modes have
been discussed to become Pochhammer modes asymptoti-
cally. However, it is more complicated than the theory of
one-dimensional acoustic impedances derived from the
Pochhammer mode of the infinite cylinder discussed in the
present paper. Furthermore, for an infinitely long elastic
waveguide with various cross sections including a circular
cross section, the propagating and evanescent waves have
also been discussed numerically.25) In the work, the trans-
mission of the waves into a liquid has not yet been treated. It
could be expanded to discuss transmission into a liquid
accurately. However, even though the accuracy is limited, the
method using the MEI, LEI and wave transmission into a
liquid is rather concise and intuitive for the analysis of the
Pochhammer mode, as discussed in the present paper.

5. Conclusions

By experiments on acoustic waves in a Cu cylinder with a
size of 1:98mm� � 51:96mmt at frequencies from 0.80 to
1.3MHz, the characteristics of the Pochhammer mode are
clarified, e.g., the mode does not penetrates water at
frequencies higher than 1.15MHz.

In the frequency range lower than the frequency at which
the Pochhammer mode couples with the flexural mode,
several definitions of equivalent impedances are effective. For
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Fig. 4. (a) The ratio of ZA to ZðaÞ that is the local equivalent impedance
(LEI) at r ¼ a is shown. (b) The transmission rates theoretically calculated
with ZðaÞ and the experimental results are shown.
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the application of acoustic wave transmission from the
cylinder into water, it is recommendable to use frequencies
lower than the frequency at which the coupling occurs. In the
case of our specimen, the frequencies are lower than 0.931
MHz. At these lower frequencies, we can also use the normal
acoustic impedance as is defined for thin disks as ZA ’ �!=k.

At intermediate frequencies near 1.1MHz, the effective
impedance that can explain the frequency dependence of the
transmission rate is defined by the LEI on the lateral surface
of the cylinder expressed by Eq. (4) with r ¼ a. At such
frequencies, the energy transmittable to water flows near the
lateral surface, where the LEIs are lower.

In the frequency range higher than 1.15MHz, the effective
impedance can be defined using the energy flux and the axial
component of the velocity field, i.e., the MEI defined by
Eq. (5). At such frequencies, acoustic wave transmission
does not occur, because the axial component of the velocity
field vanishes in spite of the existence of an energy flow. This
means that the energy is carried by the radial component of
the velocity field, and that the shear components for water
become higher than the pressure components.

The effective impedances suitable in the target frequency
range must be selected, as we have concluded above for the
one-dimensional theory of finite cylinders. The method of
defining the equivalent acoustic impedance using the energy
flux is feasible for application in other acoustic waveguides
that do not have circular cross sections.
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Appendix A: Energy Flux in Cylinders

In isotropic media, the stiffness constants have the relation
c11 ¼ 2c44 þ c12. Using the Lamé constants, we can also
express them as � ¼ c12 and � ¼ c44 respectively; further-
more, Young’s modulus and the Poisson ratio are E ¼
�ð3� þ 2�Þ=ð� þ 2�Þ and � ¼ �=ð2� þ 2�Þ, respectively.

In the following discussions, we use the method elucidated
by Auld using the particle velocity field v instead of the
displacement u.26) When media are isotropic and do not have
any losses of energy, the time factor is ei!t and the velocity
field becomes v ¼ i!u. This relation is convenient when we
discuss the acoustic impedances. With the stiffness constants
and density of the isotropic media, the equation of motion is

c44r2vþ ðc11 � c44Þrðr � vÞ ¼ �
@2v

@t2
: ðA:1Þ

By introducing the scalar potential ¯ and the vector potential
�, the velocity field is expressed as

v ¼ r�þr ��: ðA:2Þ
The equation of motion is then equivalent to the next two
equations:

r2�� 1

V2
L

@2�

@t2
¼ 0; ðA:3Þ

r2�� 1

V2
T

@2�

@t2
¼ 0; ðA:4Þ

where VL ¼ ffiffiffiffiffiffiffiffiffiffiffi
c11=�

p
and VT ¼ ffiffiffiffiffiffiffiffiffiffiffi

c44=�
p

are the longitudinal
and transverse velocities, respectively, in bulk media.

For the discussion of elastic waves in a cylinder with an
infinite length, the velocity field is expressed in the
cylindrical coordinates ðr; �; zÞ as v ¼ vrer þ v�e� þ vzez,
where er, er, and ez are the base vectors. We concentrate on
azimuthally symmetric modes, i.e., @v=@� ¼ 0; then, the
solutions of Eqs. (A03) and (A04) are obtained as

� ¼ AJ0ð�rÞe�ikzþi!t; ðA:5Þ
� ¼ �e�BJ1ð	rÞe�ikzþi!t; ðA:6Þ

where �2 ¼ !2=V2
L � k2 and 	2 ¼ !2=V2

T � k2. Using these
potentials, the components of the velocity field become

vr ¼ f�A�J1ð�rÞ � ikBJ1ð	rÞge�ikzþi!t; ðA:7Þ
v� ¼ 0; ðA:8Þ
vz ¼ f�ikAJ0ð�rÞ � B	J0ð	rÞge�ikzþi!t: ðA:9Þ

The strain and stress tensors are now calculated with the
relation u ¼ ð1=i!Þv using the same stiffness constants as
those in rectangular coordinates. By using the abbreviated
suffixes f1; 2; 3; 4; 5; 6g for frr; ��; zz; �z; zr; r�g, we can
deduce the expression of the stress tensor as

T1

T2

T3

T4

T5

T6

2
66666666664

3
77777777775

¼

c11
@ur
@r

þ c12
ur
r
þ c12

@uz
@z

c12
@ur
@r

þ c11
ur
r
þ c12

@uz
@z

c12
@ur
@r

þ c12
ur
r
þ c11

@uz
@z

0

c44
@ur
@z

þ @uz
@r

� �

0

2
66666666666666664

3
77777777777777775

: ðA:10Þ

When we calculate these expressions, the next quantity often
appears:

� ¼ @vr
@r

þ vr
r
þ @vz

@z
¼ �Að�2 þ k2ÞJ0ð�rÞe�ikzþi!t: ðA:11Þ

This is called the dilatation, and the next quantity is called the
rotation:

� ¼ 1

2

@vr
@z

� vz
r

� �
¼ � 1

2
Bð	2 þ k2ÞJ1ð	rÞe�ikzþi!t: ðA:12Þ

The explicit forms of the stress components become

i!T1=e
�ikzþi!t ¼ Af2c44�2J000 ð�rÞ � c12ð�2 þ k2ÞJ0ð�rÞg

þ B2c44ik	J
00
0 ð	rÞ; ðA:13Þ

i!T2=e
�ikzþi!t ¼ A 2c44

�

r
J00ð�rÞ � c12ð�2 þ k2ÞJ0ð�rÞ

n o

þ B2c44
ik

r
J00ð	rÞ; ðA:14Þ

i!T3=e
�ikzþi!t ¼ �Af2c44k2 þ c12ð�2 þ k2ÞgJ0ð�rÞ

þ B2c44ik	J0ð	rÞ; ðA:15Þ
i!T4=e

�ikzþi!t ¼ 0; ðA:16Þ
i!T5=e

�ikzþi!t ¼ �Ac442ik�J
0
0ð�rÞ

� Bc44ð	2 � k2ÞJ00ð	rÞ; ðA:17Þ
i!T6=e

�ikzþi!t ¼ 0: ðA:18Þ
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When we apply the free-boundary condition on the lateral
surface of the cylinder, we have T1 ¼ 0 and T5 ¼ 0 at r ¼ a,
where a is the radius of the cross section. As a result we
have

2
�

a
ð	2 þ k2ÞJ1ð�aÞJ1ð	aÞ � ð	2 � k2Þ2J0ð�aÞJ1ð	aÞ

� 4k2�	J1ð�aÞJ0ð	aÞ ¼ 0: ðA:19Þ
This is called the Pochhammer frequency equation,4,5) and its
roots give the dispersion relations of acoustic waves. We call
these waves the Pohhammer modes in the present paper.
Furthermore, we obtain the ratio of the potential amplitudes
as

B

A
¼ �ik	f; ðA:20Þ

where

f ¼ 2�J1ð�aÞ
ð	2 � k2Þ	J1ð	aÞ : ðA:21Þ

We discuss the energy flux for the waves of the
Pochhammer mode. To obtain the Poynting vector P, we
rewrite the stress tensor as

T ¼
T1 T6 T5

T6 T2 T4

T5 T4 T3

2
64

3
75 ¼

T1 0 T5

0 T2 0

T5 0 T3

2
64

3
75: ðA:22Þ

The formula that gives the Poynting vector is

P ¼ � 1

2
Re½v� � T�: ðA:23Þ

By using the explicit expressions for the components of v and
T, we have Pr ¼ P� ¼ 0 and

Pz ¼ jAj2kc44
2!

½2f�J1ð�rÞg2 þ k2ðk2 � 	2Þf2f	J1ð	rÞg2

þ ð3k2 � 	2Þf�J1ð�rÞ	J1ð	rÞ
þ ðk2 � 2�2 þ 	2ÞfJ0ð�rÞg2 þ 2k2	4f2fJ0ð	rÞg2

þ 	2ð2�2 � 	2 � 3k2ÞfJ0ð�rÞJ0ð	rÞ�: ðA:24Þ
Therefore, the total energy flux J ¼ 2�

R a
0
rP dr has a

nonzero component along the axis like

Jz ¼ 2�

Z a

0

rPz dr

¼ jAj2kc44
2!

ðk2 þ 	2Þ�a2 Q� þ k2	2f2Q	 þ 4f

a2
Q�	

� �
;

ðA:25Þ
where we define

Q� ¼ J20ð�aÞ þ J21 ð�aÞ; ðA:26Þ
Q	 ¼ J20ð	aÞ þ J21 ð	aÞ; ðA:27Þ
Q�	 ¼ �aJ1ð�aÞJ0ð	aÞ � 	aJ0ð�aÞJ1ð	aÞ: ðA:28Þ

Appendix B: Equivalent Impedances

We summarize the definitions of equivalent impedances
that can explain the experimental transmission rates at
frequencies lower than 1.0MHz. When the condition 	 ¼ k
(!=k ¼ ffiffiffi

2
p

VT) is satisfied, all impedances explained in the
following subsections are the same as c442	=! ¼ �!=k ¼

�
ffiffiffi
2

p
VT. Furthermore, the dilatations defined by Eq. (A011)

vanish and the rotations defined by Eq. (A012) have nonzero
values. Therefore, the Pochhammer mode has the character of
equivoluminal waves or pure shear waves. Furthermore, it
couples with the flexural mode under the same conditions.8,9)

B.1 Mean equivalent impedance 1
When the Pochhammer frequency equation is satisfied, the

z-component of the velocity field, Eq. (A09), becomes

vzðrÞ ¼ ikAf�J0ð�rÞ þ 	2fJ0ð	rÞge�ikzþi!t: ðB:1Þ
The mean square value over the cross section of the cylinder
is obtained as

hjvzj2i ¼ 2

a2

Z a

0

rjvzðrÞj2 dr

¼ k2jAj2 Q� þ 	4f2Q	 � 4f
	2

ð�2 � 	2Þa2 Q�	

� �
:

ðB:2Þ
With this expression, MEI is defined as

�Z ¼ Jz=�a
2

1

2
hjvzj2i

¼ hPzi
1

2
hjvzj2i

¼ �
!

k

Q� þ k2	2f2Q	 þ 4f
1

a2
Q�	

Q� þ 	4f2Q	 � 4f
	2

ð�2 � 	2Þa2Q�	

: ðB:3Þ

This is the MEI discussed in the text using Eq. (6). The
transmission rates in one-dimensional approximation are
calculated by the substitution of �Z for ZA in Eq. (1).

B.2 Local equivalent impedance 1
Regarding the cross section at r, LEI is defined as

ZðrÞ ¼ PzðrÞ
1

2
jvzðrÞj2

; ðB:4Þ

where PzðrÞ has been defined in Eq. (A024) and vzðrÞ in
Eq. (B01). When we substitute the mean, hZi, of the LEI for
ZA in Eq. (1), we have the transmission rates in one-
dimensional approximation. In the text, the LEI at r ¼ a,
ZðaÞ has been discussed in Sect. 4. The impedance hZi is
different from the �Z discussed in the previous subsection.

B.3 Mean equivalent impedance 2
When the Pochhammer frequency equation is satisfied,

the stress component T3 ¼ Tzz expressed in Eq. (A015)
becomes

TzzðrÞ ¼ c44
i!

Afð2�2 � 	2 � k2ÞJ0ð�rÞ

þ 2k2	2fJ0ð	rÞge�ikzþi!t: ðB:5Þ
With the mean of this quantity, hTzzi, and the mean of
Eq. (B01), hvzðrÞi, we have another definition of MEI as

�Z2 ¼ �hTzzi
hvzi

¼ � c44
k!

4k2�2 � ð	2 � 2�2 þ k2Þð	2 � k2Þ
	2 � 2�2 � k2

: ðB:6Þ
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We can also obtain the transmission rates in one-dimensional
approximation with the substitution of �Z2 for ZA in Eq. (1).

B.4 Local equivalent impedance 2
Another expression of LEI can be defined using Eqs. (B01)

and (B05) as

Z2ðrÞ ¼ �TzzðrÞ
vzðrÞ

¼ � c44
k!

ð2�2 � 	2 � k2ÞJ0ð�rÞ þ 2k2	2fJ0ð	rÞ
J0ð�rÞ � 	2fJ0ð	rÞ : ðB:7Þ

We can also obtain the transmission rates in one-dimensional
approximation with the substitution of hZ2i for ZA in Eq. (1).
The impedance hZ2i is different from the �Z2 discussed in the
previous subsection.
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