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プレゼンター
プレゼンテーションのノート
(Thank you kind introduction.  As  already introduced , )
(Hallow, )
I ‘m Kato and from Yamanashi University.
And these people are my colleague about this study.  

Now, I would like to talk about a new discretizatiom scheme 
To extend  Recursive Transfer Method.
(0’30”)


Introduction
—

 Numerical tools for resonance phenomena.
= RTM (Recursive Transfer Method)
for scattering Problems

e Extraction of localized/quasi-localized waves
= suitable to Fano resonance

 RTM scope was limitted to 2"d-order differential eq

* Need to derive 2" order diffrence eq from higher-order differential
egs.
= Weak-Form Discritization
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Recently, we are studying about numerical method to analyse resonance phenomena.
There are already many numerical method,( such as FEM, BPM BVM etc.)
Among all of those, RTM( or the Recursive Transfer Method)  is specific to analyse scattering problems 
and 
Extraction of localized/quasi-localized waves is 
an excellent property of this method (=RTM)
Which is suitable to analyse Fanno resonance 
Because the Fano resonance is caused by the interaction between the incident and quasi-localized waves.

Although RTM has an excellent feature, 
its application scope was limited to a special case of 2nd order differential eqs.  
To extend its application scope, we need to derive 2nd-order difference eq from higher-order diffrential eqs. 
because RTM is based on the 2nd-order difference equation, 

To meet this requirement, we proposed a new discretization scheme using on the weak-form theory framework.
Therefore, 
 this method is termed as Weak-Form Discretization.
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Scattering problems(1D)

—
B 4t-order diff. eq. B Functional

Flw,u]l = [ {w" | u"+wmu }dx

[1()u™(x) " -m(x)u(x) =0
xn+h

Euler-Bernoulli model for elastic beams H-w'(1 u)"+ w(l u)™] X =0 (Vw)

Xn-

l(x) = El Stiffness of a beam Narrow interval L = [Xy-h, X,+h]

M) = o*4(x) BC for w(x)
A(X) Linear mass density W) =0,  W(x.+h) =0
o Angular freq. v S
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Here, we will consider  a simple system being subject to this 4th-order ditterantial equation  in 1D space: 
This system would be a best model in order to understand the nature of our scheme without complicated and trifle(unimportant) matters.

Here, the field variable is u(x)  that shows transverse displacement of an elastic beam oscillating in stead state.
The coefficient functions l(x) and m(x) are determined 
by elastic properties of an beam 

(ω is an angular frequency)  

By multiplying a test function w(x) to both-hand-sides of this equation, 
we can derive a functional form, which is equivalent to solve this differential equation. 

The integral interval is an narrow region around the discretized point xn as shown here, h is the width of the segmented space.

If the test function satisfies these BC’s, the boundary value of u(x)  is not needed to be considered explicitly. 
(2’00”)


Discretization under weak-form scheme
—

B Interpolation with Helmite elemtn

Interpolation coordinate &=x - X,
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u(x) = [1 sszs{
2h? 3h?

_ | u(xn)
U(Xn) = {U'(Xn)}
i i i > B Functional expression
Flw,u]l = | {w" D u"+vwu }dx
L

=0 (Vw) L = [X,-h, X,+h]

Cau(Xn-1) + byu(x,) + au(Xp+1) =0
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The discretization can be achieved by interpolating the field variable u(x), 
the test function w(x) and the coefficient functions at  three serial  points .
Here, we introduce a method to use a cubic polynomials provided by Hermite element (that is developed in FEM). 

This function interpolates  the  values of field variable u(x) and its derivative u’(x) 
at two endpoints of this interval.
Here,  xi (=x-xn) is a distance from the centre point and the h is the width of intervals.
The similar expression is possible for the left interval .
Therefore, the  field vector u(x) and other functions can be expressed 
by three values at  serially aligned points on the x-axis.

Using the condition that the funtional value must be zero for all test functions w(x)
We can derive this kind of 2nd-order difference eq. 
 as denoted here.

Here, u(x) is the 2D vector.
the order of equations is reduced to 2 from 4 under this  transformation.
This  reduction was achieved by increasing the dimension of field variable.
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Stepping matrices for port regions

B \Wave Constants in Ports B Stepping matrices
CportU(Xn-l)"' bportU(Xn)+ a-portU(Xn+1) =0 — ) —
h ei ikh 0
u(Xn+1) - e;/] U(Xn) K+(dmp/grw) =V V-l
0 et

B Eigen Problem and Stepping Matrix

Cport  Bport || U(Xn-1) _ e’?h O  apor U(Xp.1)
o I | uw 10 U(xy) Lo = )

_ |k (propagation wave)
1= | £y (dampen/grown wave)

Xn Xn+1

Port region
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At the input /output  port-regions, the wave propagation 
can be expressed with a special matrix that is  called stepping matrix. 

If the port region is translationally invariant, 
the coefficients (of the difference eq.) are independent of space coordinate.
This situation is denoted by the  subscript of `port’ as shown in this from.

Because the system is assumed to be oscillating in steady state, 
The field strength changes with an exponential factor, exp(`eta’h) as the wave proceeds one step forward. 
Here, eta is a wave constant which indicates how to change the phase and  amplitude of the wave.

This  Expression can regarded as an type of eigenvalue problem. 
And We can transform this expression into a matrix form.
Here,  exp(eta h) is the eigenvalue and the successively aligned vector of u(xn-1) and u(xn) is the eigenvector.
Here, O and I are 2x 2 zero matrix and identity matrix, respectively. 

Because the full matrix size is 4x4, there are four eigenvalues,     
Which correspond  to the fundamental solutions of 4th-order differential equation in continuous system.
Two of those are  travelling waves.
and others are damping/growing waves.

By choosing these wave constants, 
we can define new MATRICIES K+/-^(dmp/grw), 
Here, +/-   shows the phase change of the travelling wave 
and damp/grw shows how the wave amplitude changes, when the wave proceed one step forward.
V is the 2x2matrix that is composed of two eigenvectors obtained from this eigenvalue problem.
(3’,00’’)


Discretized wave expression in port regions

) + direc.
< P,

u() = < - dire ,/\
[K_(grw) ]nurf 9‘ Scattel’ing u(xn) — {K+(dmp) J(n-N)utr
. (orw) region

|
'] 11—
T | I

Xo X XN X

Input port Output port

=
-
A

B \Waves in Ports

n .
KO Ty + KO "y input port
ux,) =

N
K, dme) @ )utr output port

B Expressions for wave connections
d
u(xy) = K9y, + K9 g at X=X

K, dmp)

U(Xn+1) = u(x) at X, > Xy
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This shows the wave expression In port regions.

The incident wave comes from left, which is expressed by the stepping matrix K+(dmp),
because it travels to the positive direction.

 The incident wave is scattered in the central region,
and converted to  reflection and transmission waves.  
The scattered wave emits not only travelling waves but also damping wave tails. 

At the output region, 
the space-dependence of the  travelling wave is expressed by the stepping matrix of K+(dmp),

At the input port region,  
The direction of travelling wave  has negative-direction
and the wave tail seems increasing   when we look positive direction of the x-axis;
Therefore, the reflection wave is expressed with the stepping matrix of K-(grw),  

The wave form in the port regions are summarized in this way.
Here, u_in is the field strength of the incident wave
u_rf is of the reflection wave        and      u_tr is of the transmission wave 

From this form, we can obtain a expression at x_1  with K+Dmp and K-Grw.
This expression will be used in a later discussion.

And in the output port, wave change can be expressed K+Dmp when the wave proceed one step forward.
This expression can be generalized in the scattering region.
(2’00”)


Generized stepping matrix in scattering region

B Stepping Matrix S,

U(Xn+1) = Spu(Xn)
U(Xn-1) :(Sn-l)_lu(xn)

(dmp)
— S—=K+
) B )0 o g oy

Ch (Sn-l)-1 +byp+a,5,=0 | I —>

X{} Xn Xn'-.'=Nh
Spe1 = '(bn + a Sn) -1Cn

Recursion Relation

Simulationdomain

B RTM-consistent PBC

Sy = K™

Absorbing BC in

discretized system
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(The stepping matrix can be generalized in the scattering region  (between two ports)).

This is the definition of the generalized spepping matrix Sn.
The role of this matrix  is  to advance the wave  by one step, as similar to the previous K’s. 
Shifting the position backward, we can change n this expression  as this one. 

Combining these two conditions with the 2nd-order difference equation, 
we can derive a RECURSION RELATION of the matrix Sn. 
If the terminal value of SN is given at the left boundary, 
all of Sn can be determined successively by this relation. 
This terminal value must be K+(dmp) , 
Because of the previous discussion about wave expression in the output region.
  
This condition is consistent to the RTM framework 
and serves as Perfectly-Absorbing-BC in the discritizatized system.

Although a strict expression of the condition is possible in the continuous system, 
It involves an error by the discritization. 
In contrast, the proposed expression involves no wave disturbance 
at the boundary in the discretized system.
(1’45”)


Reflection and transmission coefficients by RTM
—

B Connection at x;

K+(dmp) Ui, + K-(ng) Urf = So (uin+ urf) +direct

Reflection field

Us = '(SO' K_(ng) )-1( SO' K+(dmp) )Uin (grw)

r =e;*us Reflection coefficient
Transmission field
Ugr = Snez Sz S1So (Uint Uye)

t=e;° Uy Transmission coefficient

e;=[10]" Unitvecor
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This shows how the RTM can determine the transmission and reflection coefficients.

At the site x = x_1, the field strength has two expressions.
One is the left expression that was shown in previous discussion in the input region,
                     which uses stepping matrices K+/-(dmp/grw).
 The other is an expression to show 
                   how the wave strength at site x0 is propagated by the stepping matrix S0 .

Using this expression 
We can connect the reflection wave to the incident wave.
Then, the reflection coefficient can be expressed by this form.
Unit vector e1  is multiplied to extract first element, urf

The transmission wave is obtained by successive operation of Sn until to the fields reach the right boundary.
Again, the transmission coefficient is given by the first element of the vector urf.

(1’30”)


Why is the 2nd-order difference equation preferred?
—

e weak-form discretization scheme
Extend the application scope of RTM
4th-order diffrential eq. is discussed

e Stepping Matrices and recursion relation

(dmp/grw) .
Ks in port regions
Sn in scattering region

e RTM-consistent PBC
An absorbing BC in discretized system
Effective to extract quasi-localized waves
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 I would like to summarize  our talks up to this point. 

Weak-form discritization scheme was proposed.
This provide a general method to derive 2nd-order difference equation
from various systems that have a functional expression.
Using this scheme, we extended the application scope of RTM 
for the system governed by 4th-order difference equation. 

Using the derived 2nd-order difference equation , we defined
stepping matrices and its recursion relation 
in    port   and    scattering       regions     
 
We proposed RTM-consistent PBC
         that serves as a perfectly absorbing BC in discretized system
         and it is effectively used to extract quasi-localized waves

(1’00”)


RTM applied to Fano resonance

B Condition concerning to
guasi-localized wave

) -y 214, sech?(x/d)

1(x)
g2 ® x<0
A mX)I(x) = )
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This is an example that the RTM can be used effectively to analyse Fano resonance.

Fano resonance is  induced by a quasi-localized wave  stimulated by the incident wave. 
The condition that the localized wave can exits is as follows:   
     The root ratio of coefficient functions m(x) over l(x) has the x-dependence of sech^2, 
     and the  root product of those    is uniform, 
     but has step-wise change at the origin defined by a parameter `theta_1’.

We have found that 
the  quasi-LOCALIZED WAVE can be considered to be formed in a potential well of sech2, in the continuous system, 
and travelling waves exit under a potential barrier, to the contrary. 
The steping parameter `theta_1’ determines the interaction of these waves.

The transmission rate shows a resonance behaviour as  shown in this figure, 
where T  is the transmission  rate, 
k_0  is indecent  wave number          and         `d ‘ is the width of the sech potential. 

Here, the data with dots are  obtained by analytical method in the continuous system  
and the solid  curve is numerically obtained by using RTM, 
The ratio of these data is given in lower figure.

Although finite discrepancy appears around the resonance point, 
RTM quite-well traces the analytic data. 

 ( The discrepancies  tend to be smaller as k_0 is further from 
    the resonance point  
( at this edge the ratio  less than <  10^-6 in dB)                                              )
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Extraction of quasi-localized wave (1/2)

B RTM-consistent Port Boundary Condition

d
UXyi1) = KE™u(x )

u(x,) = (ngrw))_lu(xo)

B Simultaneous eq. with all u(x,)

Col(X.1)+0ou(Xo)+aou(xy) = 0, (n=0)
Cau(Xn+)thau(x,)+a,u(x,.1) =0, (n=1,2,...,N-1

CnU(Xn-1) U (Xn)Hanu(Xn+1) = 0. (n=N)

Bl Separation of coefficients with preliminary k,” and its actual k?
m(x) = (M(X) — ko’l(Xo)) + ki I(Xo)

cn = cW , k?c@® | by, = b® |, k*b® | a, = a® , k‘a?® .
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Extraction of the quasi-LOCALIZED WAVE is possible       and         it is a notable feature of RTM.

The quasi-localized wave has damping wave tails  
and it also emits outgoing travelling waves. 

At the right boundary, the traveling wave proceeds positive-direction
and the wave tail seems to be dampen (decreasing) when we look positive-direction. 
Therefore, the change of the wave can be expressed with the stepping matrix   K+Dmp

At the counter boundary, the waves change in counter wise, 
and the wave can be expressed with K-Grw. 
Because the travelling wave has negative direction  and the wave tails seems growing to the positive direction.

These two expressions can be considered as PORT BOUNDARY CONDITION
That is consist with the RTM procedures.

Gathering all 2nd-order difference eqs, we can find the field strength of quasi-localized wave.
In this eq. there are two values being outside the simulation domain,
 at x_-1 and x_N+1 (here and here).
Those two values can be eliminated by these BC. 

To obtain the value of the stepping matrices (K+/- and Dmp/Grw ), the wave number in the port region is needed,
However, this value k0 is not clear at first, 
Therefore, we have to use preliminary value of k0.  
  
To get consistency among the preliminary value of k0 and its actual  value of kL  
the coefficient function m(x) was separated into two parts as shown here.
If   k0^2 =(is) kL^2,  the divided function( of the right hand side) regresses to the original function of m(x).

Associating with this separation, the coefficients of cn, bn and an were also separated into two part,
according whether including the term kL^2.
Then,  the simultaneous equation can be transform into a matrix form.
(3’20”)


Extraction of quasi-localized wave (/2

—

M Actual k. * as eigenvalue and wave shape as eigenvector

1 1 - - Al 1~ -
c&“(KS‘-‘ 'W>) +bs o 0 .. 0 0 u(xo) céz)(KE,g 'W)) +? o 0 .. 0 0 u(xo)
u(xa) u(x
1) 1) 2) 2) 2) 1)
C( ) b(l ) a(l) k) C(l) bg ) a(l ) ut)
0 C( ) bé ) a(zl) 2 0 C(Z) béz) a(z)
= kL
0o o - B ol k| | ey 0o o o s ||

. . . ked = 0.99766 +i 0.00062
Consistency by iterative use -

a/m= 0

ke — K™ K9 K

r

u(x)

Eleven times iterations
kL(lO+ 1)_kL(p)
kL(D)

<10°
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(The simultaneous eqs for field strength can be transformed into matrix form.) 

The left matrix is composed of  the coefficients which are   not depepend on kL ^2 
And the the right  are those that is depend on kL^2
The value of kL^2 is an eigenvalue 
and this column vector can be regarded as the eigenvector 
that determines  the wave shape.

The preliminary value of k0 determines the stepping matrices K+/- Dmp/Grw, 
then the value of kL is found by this  eigenvalue problem. 
The consistency of preliminary k0 and the eigenvalue kL 
can be achieved by iterative use of kL as k0.
After  eleven-times iterations, 
the relative discrepancy of successive kL was suppressed to be smaller than 10^-5. 

            This figure shows  the wave shape, 
            where the oscillation is shown  by the change of the phase factor.  

This is the consistent wave number kL which  has  an imaginary part, 
That  is caused by the outgoing travelling waves. 
However, it is not always clear what the magnitude of imaginary part means.
therefore we developed a model to explain this imaginary par. 

(2’ 00”)


S-matrix and its phase shift due to single pole kL
—

Unitarity of S-matrix

. ked = 0.99766 +i 0.00062
S(k) — |:r(k0) t(kO):| . )
t(ko) r'(ko) e
detS(k,) = e’
< o120 by(ko Ko-K L E
ko' k|_ — 095 Ei 1.05
. kod incident wave number
cf. scattering theory -
Decomposition of phase shift . 2l
So) = 0 (ko) *+ 0 s (ko) 5 |
_1 . kok o
6 res(kO) 2 Iog kO' kL 6,95 1 1.05
1 kO | Re[kL] kod incident wave number

= cot Imik,]
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This is the S-matrix defined by the reflection and transmission coefficients 
Because the system conserves energy during scattering phenomenon,
determinant of S(k)  must be unitary and  
it can be expressed with phase shift `delta’(k) in this way.

The phase shift depend on the incident wave number k0,
ant it has a drastic change at the resonance point as shown in this figure.
This drastic change can be explained  using the scattering theory of Shoeredinger eq,
 
According to the scattering theory,
the detS   can be approximately divided into two factors: 
One is  the factor caused by the background phase  that changes smoothly as shown by this dash line. 
The other factor is this function 
which is the simplest unitary function with  kL  as a single pole.
Here, kL is the complex wave number obtained by previous eignvalue problem 
and kL* is its complex conjugate.

The phase shift `delta’’(k0) is approximated by the sum of two phases. 
The phase shift `delta’_res is determined by the  unitary function. 
Here,  Re[kL] is the centre of resonance curve and
            Im[kL] can be regarded as the width of this curve.

In this figure, 
the dot curve is the sum of delta_bg and delta_res, 
which well approximates the solid curve of deltal.  
The agreement of two curves convinces us about appropriateness of the single pole mode.

(2’30”~3’00”) 


Wave equation for plate deformation(2D)
—

B 4"%-order differential equation
Ao(DvoU)'l‘ Al(D1A1U)+ Ag(DgAzU) - 2 obu=0

Tensor Operators Plate Stifness

2 2
_ 9" 0 Eb®

Ao=52+ 57 Do) = 2413
a 2 a 2 a 2 Eb3
A= —— RENE A, = %oy Da(xy) =D20V) = 52243

B Functional expression
Flw,u] = | {AoWDoAp+ AyWD 1A U+ ApWD2A, U - W w 2 obu }dS
L

=0 (Vw)
BC for w(x) w(x,yn*th) =0, %y w(x,yn=h) =0
B 2"d-order difference equation
CaU(Yn-1) + baU(Yn) + anU(Yns1) =0

U(yn)= [ Uo(yn) Us(Yn) Us(Yn)Uz2(Yn):**Unx(¥n)]',
Ui(Yn) = [U(X1 ,Yn) Ux(Xi ,¥n) Uy(Xi ,Yn) Uxy(Xi ’yn)]T
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The weak-form discretization is not only applicable to 1D system but also valid for 2D systems like here.

This is a 4-th order difference equation in 2D space
that governs flexural waves on a elastic plate oscillating in steady state.

Here, u(x,y) is the vertical displacement of the plate,
The operator D_0 is Laplacian and D_1 and D_2 are newly defined operators 
as denoted in these ways.
The functions D_0, D_1 and D_2 are defined by elastic feature of the plate.
This equation form was derived satisfying the covariance under the coordinate rotation. 

This system also has a functional under weak-form theory framework as shown hear.

Although the dimension is increased (to 2),     the weak-form discritization is applicable.
and we can derive a 2nd order difference eq. as here.
Here, the vector U is a large vector which is compose of the displacement u(x,yI) and its derivatives, as shown here.

(1’30”)




Interpolation for discretization (2D, polynomial)
—

B Cubic polynomial S = [xy.+0h, y,+6h]
x-direction X A 0=1
u(x y) \’\\
ui(y) = { %x“(x- y)} . E=x%,1=01,2...,N, i
1
) , ;
y-direction Yni1 ‘yn Yo y
/
Ui(Yn — _
Ui(yn) = { %;(zl()yn)} . =YY n=012...N, % Lljol(();/r;))
TOSE N
U= 00t {Ut.h((yl)y)} 7 Uy

U(X1+1,Yn)
Serial vector

U(yn) = [ UO(yn) Ul(yn) Uz(Vn)---- UNx(yn)]T
ui(X1,Yn)

anU (yn+1)+an (yn)+CnU (yn-l) - O

Ui(yn) Ui(Yn+1)


プレゼンター
プレゼンテーションのノート
The interpolation of 2D system is composed of two interpolations along the x- and y- axles.
Similar to the 1D case, the cubic polynomial  is also applicable for both axes .
In this case the field varible in discrete system is four-dimesional vector composed of
                   2D vector of   U = [u , u_x ] 
And         its  composite of U and U_y . 
  
The resulting difference equation is similar to the previous one except the dimensions.
The dimension of the total vector U has 4(Nx+1),
The coefficients cn, bn and an have size of 4(Nx+1)x4(Nx+1).            


An extracted quasi-localized wave

RTM with RTM-consistent PBC
Geometry of the system f_ = 15.4838 +i 0.02737 kHz

ux.y)
A

AN

Comparison of mode shapes FEM with free BC

15} — RTM
FEM
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Phase shift due to single pole f,

Unitarity of S-matrix 1
(f) t(f)
S(K) = |'
[t(f) r(f)] x 05 Width

det S(F) = 2°® L

i f-f” -
~ e|2 0pglf) L °T53 154 185 156
f- fi f (kH2)

. - f =15483-0.027i kH
Phase shift decomposition . o

0 (f) ~ 0 bg (f) +0 res (f)
1 f-f, "
0 res(f) = i log f_ fIL_

1 f -Reffi]

-0 Im|[f] 153 154 155 156
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Similar to 1D system,
reflection rate has a resonant behaviour.
and the phase shft associated with the S-matrix can be explained with the single pole model successfully.

(0’30”)




Quasi-localized wave as an eigenstate
—

e Consistency of ko with k.and (™™

Validity of RTM-consistent PBC

e Single pole model for complex k.
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Hitherto, we are considered how to extract quasi-localized waves,

The extraction of quasi-localized/localized waves can be reduced to solving an eigenvalue problem, considering the  consistency  of the preliminary value number k0 and the complex kL determined by the eigenvalue. 

The RTM-consistent PBC plays serves for considering the effecto of damping tails and the emission of the outgoing travelling waves,  

The Phse shift can be explained by single pole model
Which serves to expladetermines the width of the resonance curve. 

(0’50”)


Concluding remarks

—

e Weak-form discretization to extend RTM scope
Valid for any higher differential equations
possessing a functional expression.

e RTM-consistent PBC
Absorbing PBC in discretized system.

Extraction of quasi-localized/localized waves.

e First discussion on 1D/2D Fano resonance being
governed by 4th-order differential equations.
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These are concluding remarks of our talk.

We proposed the weak-form discretization scheme,
to extend the application scope of RTM.
This is valid for    any    higher-order differential eqs.
which have  functional expression.

We proposed  RTM-consistent PBC, 
which is not always strict in the continuous system 
but serves as perfectly absorbing condition in discretized systems.
And effective to extract quasi-localized waves.

This is the first study of the Fano resonance being subject to the 4th-order differential equations.

Thank you for your kind attention.
(1’00”)
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Lost of higher derivative in Neumann type BC
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RTM confirmed by experiment
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