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(Thank you kind introduction.  As  already introduced , )(Hallow, )I ‘m Kato and from Yamanashi University.And these people are my colleague about this study.  Now, I would like to talk about a new discretizatiom scheme To extend  Recursive Transfer Method.(0’30”)



• Numerical tools for resonance phenomena. 

      ⇒ RTM （Recursive Transfer Method）  
           for scattering Problems 

 

• Extraction of localized/quasi-localized waves 

     ⇒ suitable to Fano resonance 
 

• RTM scope was limitted to 2nd-order differential eq 

• Need to derive 2nd order diffrence eq from higher-order differential 
eqs. 

  ⇒ Weak-Form Discritization           

Introduction 
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Recently, we are studying about numerical method to analyse resonance phenomena.There are already many numerical method,( such as FEM, BPM BVM etc.)Among all of those, RTM( or the Recursive Transfer Method)  is specific to analyse scattering problems and Extraction of localized/quasi-localized waves is an excellent property of this method (=RTM)Which is suitable to analyse Fanno resonance Because the Fano resonance is caused by the interaction between the incident and quasi-localized waves.Although RTM has an excellent feature, its application scope was limited to a special case of 2nd order differential eqs.  To extend its application scope, we need to derive 2nd-order difference eq from higher-order diffrential eqs. because RTM is based on the 2nd-order difference equation, To meet this requirement, we proposed a new discretization scheme using on the weak-form theory framework.Therefore,  this method is termed as Weak-Form Discretization.(2’00”)



Scattering problems（1D） 

 [l(x)u"(x) ]" -m(x)u(x) =0 
 
Euler-Bernoulli model for elastic beams  
    l(x) = EI  Stiffness of a beam 

    m(x) = ω2λ(x)  
  λ(x)  Linear mass density 
  ω   Angular freq. 
     
 

■ 4th-order diff. eq. 

F[w,u] = ⌡
⌠

L
 {w" l u"+wmu }dx  

   +



-w'(l u)"+ w(l u)"'
xn+h

xn-h
 ⇒0（∀w） 

  Narrow interval L = [xn-h, xn+h]  

 BC for w(x) 

       w(xn+h) = 0,   w'(xn+h) =0 

■ Functional  
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Here, we will consider  a simple system being subject to this 4th-order ditterantial equation  in 1D space: This system would be a best model in order to understand the nature of our scheme without complicated and trifle(unimportant) matters.Here, the field variable is u(x)  that shows transverse displacement of an elastic beam oscillating in stead state.The coefficient functions l(x) and m(x) are determined by elastic properties of an beam (ω is an angular frequency)  By multiplying a test function w(x) to both-hand-sides of this equation, we can derive a functional form, which is equivalent to solve this differential equation. The integral interval is an narrow region around the discretized point xn as shown here, h is the width of the segmented space.If the test function satisfies these BC’s, the boundary value of u(x)  is not needed to be considered explicitly. (2’00”)



Discretization  under weak-form scheme 

■ Interpolation with Helmite elemtn 

 Interpolation coordinate  ξ= x - xn 

                      1  
       1  0  0  0     
        0  1  0   0 
 u(x) = [1 ξξ2 ξ3] 1  h  h2    h3 

           0  1  2h2  3h3 

 









u(xn)

u(xn+1)   

 

   u(xn) = 






u(xn)

u'(xn)      

■ Functional expression  

 F[w,u] = ⌡
⌠

L
 {w" D u"+vwu }dx  

      ⇒0（∀w）  L = [xn-h, xn+h] 

 

    cnu(xn-1) + bnu(xn) + anu(xn+1) = 0  

 

u 

x 

u(xn) = 






u(xn)

u'(xn)   

 

 

0      h  ξ 

 

 

  xn-1    xn   xn+1 

 

u(xn+1) u(xn-1) 
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The discretization can be achieved by interpolating the field variable u(x), the test function w(x) and the coefficient functions at  three serial  points .Here, we introduce a method to use a cubic polynomials provided by Hermite element (that is developed in FEM). This function interpolates  the  values of field variable u(x) and its derivative u’(x) at two endpoints of this interval.Here,  xi (=x-xn) is a distance from the centre point and the h is the width of intervals.The similar expression is possible for the left interval .Therefore, the  field vector u(x) and other functions can be expressed by three values at  serially aligned points on the x-axis.Using the condition that the funtional value must be zero for all test functions w(x)We can derive this kind of 2nd-order difference eq.  as denoted here.Here, u(x) is the 2D vector.the order of equations is reduced to 2 from 4 under this  transformation.This  reduction was achieved by increasing the dimension of field variable.(2’00”)



Stepping matrices for port regions 

■ Wave Constants in Ports 

cportu(xn-1)+ bportu(xn)+ aportu(xn+1) = 0 

   u(xn+1) = eηhu(xn)  
 

■ Eigen Problem and Stepping Matrix 
 
   cport  bport   u(xn-1)             O   aport   u(xn-1) 

     O       I     u(xn)               -I  O       u(xn) = eηh
 

 

 

 η = 


±ik  (propagation wave)   

±γ  (dampen/grown wave)  

■Stepping matrices 

      

 
                e±ikh 0 
K±

(dmp/grw)  = V             V -1 

                0    e±γh  
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At the input /output  port-regions, the wave propagation can be expressed with a special matrix that is  called stepping matrix. If the port region is translationally invariant, the coefficients (of the difference eq.) are independent of space coordinate.This situation is denoted by the  subscript of `port’ as shown in this from.Because the system is assumed to be oscillating in steady state, The field strength changes with an exponential factor, exp(`eta’h) as the wave proceeds one step forward. Here, eta is a wave constant which indicates how to change the phase and  amplitude of the wave.This  Expression can regarded as an type of eigenvalue problem. And We can transform this expression into a matrix form.Here,  exp(eta h) is the eigenvalue and the successively aligned vector of u(xn-1) and u(xn) is the eigenvector.Here, O and I are 2x 2 zero matrix and identity matrix, respectively. Because the full matrix size is 4x4, there are four eigenvalues,     Which correspond  to the fundamental solutions of 4th-order differential equation in continuous system.Two of those are  travelling waves.and others are damping/growing waves.By choosing these wave constants, we can define new MATRICIES K+/-^(dmp/grw), Here, +/-   shows the phase change of the travelling wave and damp/grw shows how the wave amplitude changes, when the wave proceed one step forward.V is the 2x2matrix that is composed of two eigenvectors obtained from this eigenvalue problem.(3’,00’’)



Discretized wave expression in port regions 

■Waves in Ports 

  u(xn) = 


K (dmp) 

+
n
 uin+ K (grw) 

-
n
  urf input port

 K (dmp) 
+

(n-N)
  utr    output port

  

■Expressions for wave connections 

   u(x1) = K (dmp) 
+ uin + K (grw) 

- urf    at  x = x1 

  u(xn+1) = K (dmp) 
+ u(xn)            at  xn > xN 

 

  

 

 

 

 

 

         

 + direc. 
 

x0        x 

 

 

 

(grw) 
 











K (grw) 
-

n
 urf  

 

 










K (dmp) 
+

n
 uin  

 u(xn ) =  - direc. 
 

 

 

x 

 

 

 

 

         

xN     

 

 

u(xn ) = 










K (dmp) 
+

(n-N)
 utr  

 

Scattering 
  region 

Input port Output port 
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This shows the wave expression In port regions.The incident wave comes from left, which is expressed by the stepping matrix K+(dmp),because it travels to the positive direction. The incident wave is scattered in the central region,and converted to  reflection and transmission waves.  The scattered wave emits not only travelling waves but also damping wave tails. At the output region, the space-dependence of the  travelling wave is expressed by the stepping matrix of K+(dmp),At the input port region,  The direction of travelling wave  has negative-directionand the wave tail seems increasing   when we look positive direction of the x-axis;Therefore, the reflection wave is expressed with the stepping matrix of K-(grw),  The wave form in the port regions are summarized in this way.Here, u_in is the field strength of the incident waveu_rf is of the reflection wave        and      u_tr is of the transmission wave From this form, we can obtain a expression at x_1  with K+Dmp and K-Grw.This expression will be used in a later discussion.And in the output port, wave change can be expressed K+Dmp when the wave proceed one step forward.This expression can be generalized in the scattering region.(2’00”)



Generized stepping matrix in scattering region 

■ Stepping Matrix Sn 
   u(x n+1)  = Snu(xn)    
   u(xn-1)  = (Sn-1)-1u(xn) 
 

   cn u(xn-1) + bn u(xn) + an u(xn+1) = 0 
   cn (Sn-1)-1 + bn + an Sn = 0 
 
   Sn-1 = -(bn + an Sn) -1cn  
  Recursion Relation 

■ RTM-consistent PBC 

    SN = K (dmp) 
+  

   Absorbing BC in  

     discretized system 

   

ｘN=Nh x0 ｘn 

    Scatterer 

  uin 

   u rf 

 

SN=K (dmp) 
+    

    Simulation domain 
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(The stepping matrix can be generalized in the scattering region  (between two ports)).This is the definition of the generalized spepping matrix Sn.The role of this matrix  is  to advance the wave  by one step, as similar to the previous K’s. Shifting the position backward, we can change n this expression  as this one. Combining these two conditions with the 2nd-order difference equation, we can derive a RECURSION RELATION of the matrix Sn. If the terminal value of SN is given at the left boundary, all of Sn can be determined successively by this relation. This terminal value must be K+(dmp) , Because of the previous discussion about wave expression in the output region.  This condition is consistent to the RTM framework and serves as Perfectly-Absorbing-BC in the discritizatized system.Although a strict expression of the condition is possible in the continuous system, It involves an error by the discritization. In contrast, the proposed expression involves no wave disturbance at the boundary in the discretized system.(1’45”)



Reflection and transmission coefficients by RTM 

■Connection at  x1 

    K (dmp) 
+ uin + K (grw) 

- urf  = S0 (uin+ urf)  

  Reflection field  

       urf  = -(S0 - K (grw) 
- )-1( S0 - K (dmp) 

+ ) uin  

       r  = e1・urf    Reflection coefficient 

  Transmission field  

       utr = SN-1…S2 S1S0 (uin+ urf) 

       t = e1・utr     Transmission coefficient 

  

   e1 = [1 0]T  Unit vecor 

  

 

 +direct. 

x 

K(dmp)
+ uin 

 

 

 

         

x0        x1 

 

K(grw)
- urf 

 
(grw) 

 

 

x 

 

 

 

 

         

S0(uin +utr ) 
 

x0        x1 

 

 

 

u0 = uin +utr  
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This shows how the RTM can determine the transmission and reflection coefficients.At the site x = x_1, the field strength has two expressions.One is the left expression that was shown in previous discussion in the input region,                     which uses stepping matrices K+/-(dmp/grw). The other is an expression to show                    how the wave strength at site x0 is propagated by the stepping matrix S0 .Using this expression We can connect the reflection wave to the incident wave.Then, the reflection coefficient can be expressed by this form.Unit vector e1  is multiplied to extract first element, urfThe transmission wave is obtained by successive operation of Sn until to the fields reach the right boundary.Again, the transmission coefficient is given by the first element of the vector urf.(1’30”)



Why is the 2nd-order difference equation preferred? 

• weak-form discretization scheme 

          Extend the application scope of RTM 

        4th-order diffrential eq. is discussed 

           

• Stepping Matrices and recursion relation 

                                     in port regions 

                    Sn           in scattering region 

 

• RTM-consistent PBC  

        An  absorbing BC in discretized system 

         Effective to extract quasi-localized waves 

K(dmp/grw)
±  
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 I would like to summarize  our talks up to this point. Weak-form discritization scheme was proposed.This provide a general method to derive 2nd-order difference equationfrom various systems that have a functional expression.Using this scheme, we extended the application scope of RTM for the system governed by 4th-order difference equation. Using the derived 2nd-order difference equation , we definedstepping matrices and its recursion relation in    port   and    scattering       regions      We proposed RTM-consistent PBC         that serves as a perfectly absorbing BC in discretized system         and it is effectively used to extract quasi-localized waves(1’00”)



RTM applied to Fano resonance 

■ Condition concerning to  
    quasi-localized wave 

     
 m(x)
 l(x)  =  k0

2(1+rb) sech2(x/d) 

        m(x)l(x) = 


 e-2θ0    x < 0

  

 e-2(θ0+ θ1)   x > 0
   

                       
                                       Quasi-Localized Wave 
 
                                                            X  
 
                      -sech2(x/d) 
                                         Interaction with θ1 

 
             
            Incident   sech2(x/d) 
                                               Transmitted      
 
      Reclection                      x  
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This is an example that the RTM can be used effectively to analyse Fano resonance.Fano resonance is  induced by a quasi-localized wave  stimulated by the incident wave. The condition that the localized wave can exits is as follows:        The root ratio of coefficient functions m(x) over l(x) has the x-dependence of sech^2,      and the  root product of those    is uniform,      but has step-wise change at the origin defined by a parameter `theta_1’.We have found that the  quasi-LOCALIZED WAVE can be considered to be formed in a potential well of sech2, in the continuous system, and travelling waves exit under a potential barrier, to the contrary. The steping parameter `theta_1’ determines the interaction of these waves.The transmission rate shows a resonance behaviour as  shown in this figure, where T  is the transmission  rate, k_0  is indecent  wave number          and         `d ‘ is the width of the sech potential. Here, the data with dots are  obtained by analytical method in the continuous system  and the solid  curve is numerically obtained by using RTM, The ratio of these data is given in lower figure.Although finite discrepancy appears around the resonance point, RTM quite-well traces the analytic data.  ( The discrepancies  tend to be smaller as k_0 is further from     the resonance point  ( at this edge the ratio  less than <  10^-6 in dB)                                              )(2’30”)



Extraction of quasi-localized wave (1/2) 

■RTM-consistent Port Boundary Condition 

       u(xＮ＋1) =  K(dmp)
+ u(xＮ)   

   u(x-1) =  








K(grw)
-

-1

u(x0)  

■Simultaneous eq. with all u(xn) 
   c0u(x-1)+b0u(x0)+a0u(x1) = 0,   (n=0) 

   cnu(xn+1)+bnu(xn)+anu(xn-1) = 0,   (n=1,2,...,N-1) 

   cNu(xN-1)+bNu(xN)+aNu(xN+1) = 0.  (n=N) 

 

■Separation of coefficients with preliminary k0
2  and its actual  kL

2 
  m(x) ⇒ (m(x) – k0

2l(x0)) + kL
2 l(x0) 

  cn ⇒ c(1)
n   +  kL

2
 c(2)

n   ,   bn ⇒ b(1)
n   +  kL

2
 b(2)

n   , an ⇒ a(1)
n   +  kL

2
 a(2)

n   . 
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Extraction of the quasi-LOCALIZED WAVE is possible       and         it is a notable feature of RTM.The quasi-localized wave has damping wave tails  and it also emits outgoing travelling waves. At the right boundary, the traveling wave proceeds positive-directionand the wave tail seems to be dampen (decreasing) when we look positive-direction. Therefore, the change of the wave can be expressed with the stepping matrix   K+DmpAt the counter boundary, the waves change in counter wise, and the wave can be expressed with K-Grw. Because the travelling wave has negative direction  and the wave tails seems growing to the positive direction.These two expressions can be considered as PORT BOUNDARY CONDITIONThat is consist with the RTM procedures.Gathering all 2nd-order difference eqs, we can find the field strength of quasi-localized wave.In this eq. there are two values being outside the simulation domain, at x_-1 and x_N+1 (here and here).Those two values can be eliminated by these BC. To obtain the value of the stepping matrices (K+/- and Dmp/Grw ), the wave number in the port region is needed,However, this value k0 is not clear at first, Therefore, we have to use preliminary value of k0.    To get consistency among the preliminary value of k0 and its actual  value of kL  the coefficient function m(x) was separated into two parts as shown here.If   k0^2 =(is) kL^2,  the divided function( of the right hand side) regresses to the original function of m(x).Associating with this separation, the coefficients of cn, bn and an were also separated into two part,according whether including the term kL^2.Then,  the simultaneous equation can be transform into a matrix form.(3’20”)



Extraction of quasi-localized wave (2/2) 

■Actual kL
2 as eigenvalue  and wave shape as eigenvector 

 

      

 

                                   = kL
2 

      

 

 

Consistency by iterative use  

       k0  → K(dmp)
+ , K(grw)

- → kL   

 

 

Eleven times iterations 

         






kL

(p+1)-kL
(p)

  
 kL

(p)
  

 < 10-5 

            

   u(x0)   
    u(x1) 
    u(x2) 
 
 
  ・ 
  ・ 
  ・ 
 
    u(xN)      

                                                

     c(1)
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K(grw)
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-1

+b(1)
0    a(1)

0       0    ・・・         0       0 

            c(1)
1         b(1)

1     a(1)
1  

          0        c(1)
2      b(1)

2    a(1)
2  

           ・ 
              ・ 
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             0       0   ・・・          c(1)
1     ｂ(1)
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+  

                                                

     c(2)
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(The simultaneous eqs for field strength can be transformed into matrix form.) The left matrix is composed of  the coefficients which are   not depepend on kL ^2 And the the right  are those that is depend on kL^2The value of kL^2 is an eigenvalue and this column vector can be regarded as the eigenvector that determines  the wave shape.The preliminary value of k0 determines the stepping matrices K+/- Dmp/Grw, then the value of kL is found by this  eigenvalue problem. The consistency of preliminary k0 and the eigenvalue kL can be achieved by iterative use of kL as k0.After  eleven-times iterations, the relative discrepancy of successive kL was suppressed to be smaller than 10^-5.             This figure shows  the wave shape,             where the oscillation is shown  by the change of the phase factor.  This is the consistent wave number kL which  has  an imaginary part, That  is caused by the outgoing travelling waves. However, it is not always clear what the magnitude of imaginary part means.therefore we developed a model to explain this imaginary par. (2’ 00”)



S-matrix and its phase shift  due to single pole kL 

Unitarity of Ｓ-matrix  

S(k) = 






r(k0) t'(k0)

t(k0) r'(k0)   

det S(k0)  = ei2δ(k0)  

     ~~ ei2δbg(k0) 
 k0-k*

L

k0- kL
     

     cf. scattering theory  

Decomposition of phase shift 
 δ(k0)  ~~  δbg (k0) +δres (k0) 

   δres(k0) = 1
2i log

 k0-k L
*

k0- kL
 

         = cot-1 
k0  - Re[kL]

 Im[kL]   
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This is the S-matrix defined by the reflection and transmission coefficients Because the system conserves energy during scattering phenomenon,determinant of S(k)  must be unitary and  it can be expressed with phase shift `delta’(k) in this way.The phase shift depend on the incident wave number k0,ant it has a drastic change at the resonance point as shown in this figure.This drastic change can be explained  using the scattering theory of Shoeredinger eq, According to the scattering theory,the detS   can be approximately divided into two factors: One is  the factor caused by the background phase  that changes smoothly as shown by this dash line. The other factor is this function which is the simplest unitary function with  kL  as a single pole.Here, kL is the complex wave number obtained by previous eignvalue problem and kL* is its complex conjugate.The phase shift `delta’’(k0) is approximated by the sum of two phases. The phase shift `delta’_res is determined by the  unitary function. Here,  Re[kL] is the centre of resonance curve and            Im[kL] can be regarded as the width of this curve.In this figure, the dot curve is the sum of delta_bg and delta_res, which well approximates the solid curve of deltal.  The agreement of two curves convinces us about appropriateness of the single pole mode.(2’30”~3’00”) 



Wave equation for plate deformation(2D） 

Δ0(D0Δ0u)+ Δ1(D1Δ1u)+ Δ2(D2Δ2u)  - ω2ρbu = 0 
Tensor Operators 

 Δ0 = 
∂2

∂x2 + 
∂2

∂y2 ,  

 Δ1 = 
∂2

∂x2 －
∂2

∂y2 , Δ2 = 2
∂2

 ∂x2∂y  

■ 4th-order differential  equation 

F[w,u] = ⌡
⌠

L
 {Δ0wD0Δ0+ Δ1wD1Δ1u+ Δ2wD2Δ2 u - wω2ρbu }dS  

       ⇒0（∀w） 

 BC for w(x)      w(x,yn±h) = 0,   
∂

 ∂y w(x,yn±h ) =0 

 

cnU(yn-1) + bnU(yn) + anU(yn+1) = 0 
          U(yn)= [ u0(yn) u1(yn) u1(yn)u2(yn)…uNx(yn)]T, 
     ul(yn) = [u(xl ,yn) ux(xl ,yn) uy(xl ,yn) uxy(xl ,yn)]T  

■ Functional expression  

 Plate Stifness  

  D0(x,y) = 
Eb3

24(1-ν)   

 D1(x,y)  =D2 (x,y) = 
Eb3

24(1+ν)  

■ 2nd-order difference equation  
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The weak-form discretization is not only applicable to 1D system but also valid for 2D systems like here.This is a 4-th order difference equation in 2D spacethat governs flexural waves on a elastic plate oscillating in steady state.Here, u(x,y) is the vertical displacement of the plate,The operator D_0 is Laplacian and D_1 and D_2 are newly defined operators as denoted in these ways.The functions D_0, D_1 and D_2 are defined by elastic feature of the plate.This equation form was derived satisfying the covariance under the coordinate rotation. This system also has a functional under weak-form theory framework as shown hear.Although the dimension is increased (to 2),     the weak-form discritization is applicable.and we can derive a 2nd order difference eq. as here.Here, the vector U is a large vector which is compose of the displacement u(x,yI) and its derivatives, as shown here.(1’30”)



Interpolation for discretization（2D, polynomial） 

■ Cubic polynomial 

x-direction  

     ul(y) = 






 u(xl y)

 
∂

 ∂xu(x. y)  , ξ= x-xl, l = 0,1,2…,Nx 

     u(x,y)= [1 ξ ξ2ξ3] C 








ul(y)

ull+1(y)   

y-direction  

      

    Ul(yn) = 






 ul(yn)

 
∂

 ∂yul(yn)
 ,  η= y-yn, n = 0,1,2…,Ny 

 

     ul(y)= [1 ηη2η3] C 








Ul(yn)

Ul (n+1y)   

 

Serial vector 

 U(yn) = [ U0(yn) U1(yn) U2(yn)…. UNx(yn)]T 

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
  

x 

 
y 

xl 

ξ 

S = []x[yn+θh, yn+θh]  
    θ = 1 

η 

 Ul(yn)        Ul(yn+1) 

yn-1   yn   yn＋１ 

U(yn) =









U0(yn) 
 U1(yn) 
・

・

・
UNx(yn)

            

u(xl+1,yn)  
 
 
 
ul(xl,yn)    

anU(yn+1)+bnU(yn)+cnU(yn-1) = 0 
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The interpolation of 2D system is composed of two interpolations along the x- and y- axles.Similar to the 1D case, the cubic polynomial  is also applicable for both axes .In this case the field varible in discrete system is four-dimesional vector composed of                   2D vector of   U = [u , u_x ] And         its  composite of U and U_y .   The resulting difference equation is similar to the previous one except the dimensions.The dimension of the total vector U has 4(Nx+1),The coefficients cn, bn and an have size of 4(Nx+1)x4(Nx+1).            



An extracted quasi-localized wave 

fL = 15.4838 +i 0.02737 kHz 
 

 

 

 

 

 

 x 

u(x,y) 

y 

Geometry of the system  

FEM with free BC Comparison of mode shapes 

RTM with RTM-consistent PBC 

プレゼンター
プレゼンテーションのノート
 



Unitarity of Ｓ-matrix  

S(k) = 








r(f) t'(f)

t(f) r'(f)   

det S(f)  = ei2δ(f)  

     ~~ ei2δbg(f) 
 f-fL

*

f- fL
     

Phase shift decomposition 

 δ(f)  ~~  δbg (f) +δres (f) 

   δres(f) = 1
2i log

 f-f L
*

f- fL
 

         = cot-1 
f  - Re[fL]

 Im[fL]   

Phase shift due to single pole fL 

15.3 15.4 15.5 15.6
0

0.5

1

f (kHz)

R

15.3 15.4 15.5 15.6

0

0.5

1

f
L
 = 15.483-0.027i kHz

f (kHz)

δ/
π δ

δ
BG

+δ
RES

δ
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   δbg +δres  

δbg   
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Similar to 1D system,reflection rate has a resonant behaviour.and the phase shft associated with the S-matrix can be explained with the single pole model successfully.(0’30”)



Quasi-localized wave as an eigenstate 

• Consistency of  k0 with kL and 

 

•   Validity of RTM-consistent PBC  

 

• Single pole model for complex kL 

K(dmp/grw)
±  

プレゼンター
プレゼンテーションのノート
Hitherto, we are considered how to extract quasi-localized waves,The extraction of quasi-localized/localized waves can be reduced to solving an eigenvalue problem, considering the  consistency  of the preliminary value number k0 and the complex kL determined by the eigenvalue. The RTM-consistent PBC plays serves for considering the effecto of damping tails and the emission of the outgoing travelling waves,  The Phse shift can be explained by single pole modelWhich serves to expladetermines the width of the resonance curve. (0’50”)



Concluding remarks 

• Weak-form discretization to extend RTM scope  

     Valid for any higher differential equations  
         possessing a functional expression.  

 

• RTM-consistent PBC 

         Absorbing PBC in discretized system.  

         Extraction of  quasi-localized/localized waves.  
 

• First discussion on 1D/2D Fano resonance being 
governed by  4th-order differential equations. 

プレゼンター
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These are concluding remarks of our talk.We proposed the weak-form discretization scheme,to extend the application scope of RTM.This is valid for    any    higher-order differential eqs.which have  functional expression.We proposed  RTM-consistent PBC, which is not always strict in the continuous system but serves as perfectly absorbing condition in discretized systems.And effective to extract quasi-localized waves.This is the first study of the Fano resonance being subject to the 4th-order differential equations.Thank you for your kind attention.(1’00”)
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Lost of higher derivative in Neumann type BC 

  ■For multi modes state 
 
   u  = a0 X0 + a1 X1 + a2 X2                 

        
∂u
∂y = ik0 a0 X0 + ik1 a1 X1 + ik2 a2 X2 ,       

        
∂2u
∂y2 = (ik0)2a0 X0 + (ik1)2 a1 X1 + (ik2)2 a2 X2,         

         
∂3u
∂y3 = (ik0)3a0 X0 + (ik1)3a1 X1 + (ik2)3a2 X2, .       

 
 
 

   






a0

a1
a2

 = 






X0 

 (ik0)2X0 
 (ik0)3

 X0 
 

X1 
 (ik1)2X1 
 (ik1)3

 X1 
 

X2 
 (ik2)2X2 
 (ik2)3

 X2 
 

-1

 









u
∂2u
∂y2

∂3u
∂y3

 .  

 
 

   ∂u
∂y = [ ik0 X0  ik1X1   ik2X2 ] 







X0 

 (ik0)2X0 
 (ik0)3

 X0 
 

X1 
 (ik1)2X1 
 (ik1)3

 X1 
 

X2 
 (ik2)2X2 
 (ik2)3

 X2 
 

-1

 









u
∂2u
∂y2

∂3u
∂y3

 . 

 ■For single mode 
 u  = a0 X0  
 

 
∂u
∂y = ik0 a0 X0 

   

 
∂u
∂y = ik0 u 

 



RTM confirmed by experiment  


	��Weak-Form Discretization Scheme�for Recursive Transfer Method�
	Introduction
	Scattering problems（1D）
	Discretization  under weak-form scheme
	Stepping matrices for port regions
	Discretized wave expression in port regions
	Generized stepping matrix in scattering region
	Reflection and transmission coefficients by RTM
	Why is the 2nd-order difference equation preferred?
	RTM applied to Fano resonance
	Extraction of quasi-localized wave (1/2)
	Extraction of quasi-localized wave (2/2)
	S-matrix and its phase shift  due to single pole kL
	Wave equation for plate deformation(2D）
	Interpolation for discretization（2D, polynomial）
	An extracted quasi-localized wave
	Phase shift due to single pole fL
	Quasi-localized wave as an eigenstate
	Concluding remarks
	Ｒｅｆｅｒｅｎｃｅｓ
	Lost of higher derivative in Neumann type BC
	RTM confirmed by experiment 

