4 複素数のべき乗と根 Powers and roots of a complex number

4.1

Let α be a complex number defined as $\alpha = r(\cos \theta + i \sin \theta)$ with a positive r and a real θ ($-\pi < \theta \le \pi$). Prove the followin identity for any integer n,

$$\alpha^n = r^n \Big[\cos(n\theta) + i \sin(n\theta) \Big].$$

4.2

Locate the following values in Gaussian plane: $(1 - i\sqrt{3})^n$ for $n = \pm 1$ and ± 3 .

4.3

Asure that the *m*-th root of $\alpha = re^{i\theta}$ is expressed as

$$\alpha^{1/m}\!=\!r^{1/m}\Big[\cos\big(\frac{\theta}{m}\!+\!\frac{2\pi k}{m}\big)+i\sin\big(\frac{\theta}{m}\!+\!\frac{2\pi k}{m}\big)\Big].$$

with any of integer $k (=0,\pm 1,\pm 2,\cdots)$. Try to illustrate why k is sufficient by limitting as $k=0,1,2,\cdots m-1$, and we have no need to consider negative k(<0).