7 複素積分 2 Complex integral -part 2 -

7.1

Let f(z) be a regular function, and let S_R be a semicircle with radius R in the upper Gaussian plane. Prove the following triangle inequality:

$$\left| \int_{S_R} f(z) dz \right| \le \int_{S_R} |f(z)| \cdot |dz|.$$

Then, evaluate the supremum of the limits below;

(a)
$$\lim_{R \to \infty} \left| \int_{S_R} \frac{dz}{z^2 + 1} \right|$$
, (b) $\lim_{R \to \infty} \left| \int_{S_R} \frac{zdz}{z^2 + 1} \right|$.

7.2

Find integral $\int_{-\infty}^{\infty} \frac{dx}{x^2+1}$ using complex integral $\int_C \frac{dz}{z^2+1}$ with an appropriate path C in Gaussian plane.

7.3

To find the integral $I = \int_0^{2\pi} e^{\cos\theta} \cos(\sin\theta) d\theta$, follow the speps below;

- (a) Evaluate the integral $I_{ex} = \int_C \frac{e^z}{z} dz$ about C: $z = e^{i\theta}$ of $0 < \theta < 2\pi$.
- (b) Show that $I = \operatorname{Im}[I_{ex}]$.