Variable separable equation $\mathbf{2}$ 変数分離形

2.1

Consider the following differential equation,

$$x(x-1)\frac{dy}{dx} + y = 0. (*)$$

- (a) Find the general solution of (*).
- (b) Eliminate an arbitrary constant in the solution obtained in (a) and verify whether (*) can be derived.
 - (c) Verify whether the solution derived in (a) satisfys the equation (*).

2.2

Concerning with each of the following differential equations, find the particular solution which satisfies the condition enclosed in the brackets;

(1)
$$\sqrt{x}y' = \sqrt{y+1}$$
 $(x = 4, y = -1)$

(2)
$$y' = 2x(1+y^2)$$
 $(x = 0, y = 0)$

(2)
$$y' = 2x(1+y^2)$$
 $(x = 0, y = 0)$
(3) $(1+x^2)y' = \sqrt{1-y^2}$ $(x = 1, y = 1)$

Here, the dash ' means the differential with respect to x.

2.3

Let f(y) be a general function of y, and the function y(x) is differentiable, then,

$$\int_{x_0}^{x_1} f(y(x)) \frac{dy}{dx} dx = \int_{y_0}^{y_1} f(y) dy, \tag{**}$$

provided that the function y = y(x) satisfies $y_0 = y(x_0)$ and $y_1 = y(x_1)$ at the ends of integration interval.

Use the relation (**) and find the particular solution of $\sqrt{x}y' = \sqrt{y+1}$ satisfying the the initial condition y = 1 at x = 4.