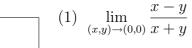
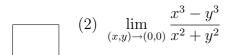
微分積分学 中間試験問題(2010年12月)

氏名	
学籍番号	
<u> </u>	

1. 次の関数の極限が存在するかどうかを調べ、存在する場合は極限値を求めよ。(各4点、計8点)





2. 次の二変数関数 f(x,y) の偏導関数 $f_x(x,y), f_y(x,y)$ を求めよ。(f_x, f_y について各 2 点、計 8 点)

(1) $f(x,y) = x^3 + 2xy^2 - y^3$

$(2) f(x,y) = \tan^{-1} \frac{dy}{dx}$	$\frac{y}{x}$
---	---------------

2	次の関数の全微分を求めよ。	(タ1占	計でより
J.	人の関数の主似力を水のよ。	(台4点、	司で思り

$$(1) z = f(x, y) = e^x \sin y$$

(2)
$$z = f(x,y) = \frac{x-y}{x+y}$$

$$4$$
. 曲面 $z=f(x,y)=x^2+3y^2$ の上の点 $(1,1,4)$ における接平面の方程式を求めよ。(6 点)

5. 全微分可能な関数
$$z=f(x,y)=xy$$
 について下記の問題に答えよ。(各 6 点、計 12 点) (1) $x=u+v,y=5u+3v$ のとき、 $\frac{\partial z}{\partial u},\frac{\partial z}{\partial v}$ を求めよ。

$$(2)$$
 $x=\cos heta, y=\sin heta$ のとき、 $\dfrac{dz}{d heta}$ を求めよ。

6.	二変数関数 $z=\log(x^2+y^2)$ の偏導関数 $\frac{\partial^2 z}{\partial x \partial y}$ を求めよ。 $(6$ 点)
7. (1)	二変数関数 $f(x,y)=e^{-x}\cos y$ について以下の問いに答えよ。 偏導関数 $f_{xx}(x,y), f_{xy}(x,y), f_{yy}(x,y)$ をそれぞれ求めよ。 $(6$ 点)
(2)	$f(x,y)$ の $\mathrm{Maclaurin}($ マクローリン $)$ 展開を 2 次の項まで求めよ。 $(6$ 点 $)$
8.	二変数関数 $f(x,y)=\tan(x-y)$ の Maclaurin 展開を、 $f(x,y)$ を $f(x,y)=g(t)=\tan t$ と $t=h(x,y)=x-y$ の合成関数とみなして 3 次の項まで求めよ。 $(10$ 点)

9. 方程式 $x^2+y^2-e^{xy}=0$ で定まる陰関数 $y=\varphi(x)$ が存在する。このとき $\frac{dy}{dx}$ を x と y を使った式で表せ。(6 点)

10.	二変数関数 $f(x,y)=x^2-2xy+2y^2-4x$ の極値を求めるため、空欄に適当な数式、数値、座標または語句を入れよ。 (⑦については計算結果と正負の判定を合わせて示せ (例: $-1<0$)。 ⑧は $ ^{ \mathbb{Z} }>0$ $ ^{ \mathbb{Z} }$ $ ^{ \mathbb{Z} }$ のどちらかを選択せよ。) (各 $ ^{ \mathbb{Z} }$ 点:計 $ ^{ \mathbb{Z} }$ 10 点)
	まず、 $f(x,y)$ の第一次偏導関数を求めると、 $f_x(x,y)=[$ ① $]$ 、
	$f_y(x,y)=[②$]。 $f_x(x,y)=f_y(x,y)=0$ となる点は、
	(x,y)=[3]]。これは極値をとる候補点となる。次に、第二次偏導関
	数を求めると、 $f_{xx}(x,y)$ = [④]、 $f_{xy}(x,y)$ = [⑤]、
	$f_{yy}(x,y) = [⑥$]。判別式、 $\Delta(x,y) = f_{xx}(x,y)f_{yy}(x,y) - (f_{xy}(x,y))^2$
	を用いて、候補点 $③$ における極値の判定条件を調べると、 $\Delta(x,y) = [⑦$
	かつ $f_{xx}(x,y)[\otimes:>0,<0]$ であるから、候補点③は $[\odot]$ $]$ 値となり、そ
	の値は[①] である。
11.	次の二変数関数 $f(x,y)$ について極値をとる候補点を求め、極値が存在すればその値を
	求めよ。(14点)
(1)	$f(x,y) = ax^2 - 12y + y^3 (a$ は負の定数) (7点)

(2) $f(x,y) = ye^{-(x^2+y^2)}$ (7点)